skip to main content

DOE PAGESDOE PAGES

Title: The Spectrum And Morphology Of The Fermi Bubbles

The Fermi bubbles are two large structures in the gamma-ray sky extending to 55° above and below the Galactic center. We analyze 50 months of Fermi Large Area Telescope data between 100 MeV and 500 GeV above 10° in Galactic latitude to derive the spectrum and morphology of the Fermi bubbles. We thoroughly explore the systematic uncertainties that arise when modeling the Galactic diffuse emission through two separate approaches. The gamma-ray spectrum is well described by either a log parabola or a power law with an exponential cutoff. We exclude a simple power law with more than 7σ signi cance. The power law with an exponential cutoff has an index of 1:9±0:2 and a cutoff energy of 110 ± 50 GeV. We nd that the gamma-ray luminosity of the bubbles is 4:4+2:4 -0:9 X 1037 erg s -1. We confirm a signi cant enhancement of gamma-ray emission in the south-eastern part of the bubbles, but we do not nd signi cant evidence for a jet. No signi cant variation of the spectrum across the bubbles is detected. The width of the boundary of the bubbles is estimated to be 3:4+3:7 -2:6 deg. Both inverse Compton (IC) models and hadronic modelsmore » including IC emission from secondary leptons t the gamma-ray data well. In the IC scenario, the synchrotron emission from the same population of electrons can also explain the WMAP and Planck microwave haze with a magnetic eld between 5 and 20 μG.« less
Authors:
 [1]
  1. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); et al.
Publication Date:
Grant/Contract Number:
AC02-76SF00515
Type:
Accepted Manuscript
Journal Name:
The Astrophysical Journal (Online)
Additional Journal Information:
Journal Name: The Astrophysical Journal (Online); Journal Volume: 793; Journal Issue: 1; Journal ID: ISSN 1538-4357
Publisher:
Institute of Physics (IOP)
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org:
USDOE
Contributing Orgs:
Fermi LAT Collaboration
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS
OSTI Identifier:
1356448

Ackermann, M. The Spectrum And Morphology Of The Fermi Bubbles. United States: N. p., Web. doi:10.1088/0004-637X/793/1/64.
Ackermann, M. The Spectrum And Morphology Of The Fermi Bubbles. United States. doi:10.1088/0004-637X/793/1/64.
Ackermann, M. 2014. "The Spectrum And Morphology Of The Fermi Bubbles". United States. doi:10.1088/0004-637X/793/1/64. https://www.osti.gov/servlets/purl/1356448.
@article{osti_1356448,
title = {The Spectrum And Morphology Of The Fermi Bubbles},
author = {Ackermann, M.},
abstractNote = {The Fermi bubbles are two large structures in the gamma-ray sky extending to 55° above and below the Galactic center. We analyze 50 months of Fermi Large Area Telescope data between 100 MeV and 500 GeV above 10° in Galactic latitude to derive the spectrum and morphology of the Fermi bubbles. We thoroughly explore the systematic uncertainties that arise when modeling the Galactic diffuse emission through two separate approaches. The gamma-ray spectrum is well described by either a log parabola or a power law with an exponential cutoff. We exclude a simple power law with more than 7σ signi cance. The power law with an exponential cutoff has an index of 1:9±0:2 and a cutoff energy of 110 ± 50 GeV. We nd that the gamma-ray luminosity of the bubbles is 4:4+2:4 -0:9 X 1037 erg s-1. We confirm a signi cant enhancement of gamma-ray emission in the south-eastern part of the bubbles, but we do not nd signi cant evidence for a jet. No signi cant variation of the spectrum across the bubbles is detected. The width of the boundary of the bubbles is estimated to be 3:4+3:7 -2:6 deg. Both inverse Compton (IC) models and hadronic models including IC emission from secondary leptons t the gamma-ray data well. In the IC scenario, the synchrotron emission from the same population of electrons can also explain the WMAP and Planck microwave haze with a magnetic eld between 5 and 20 μG.},
doi = {10.1088/0004-637X/793/1/64},
journal = {The Astrophysical Journal (Online)},
number = 1,
volume = 793,
place = {United States},
year = {2014},
month = {9}
}