skip to main content


Title: Characterizing convective cold pools: Characterizing Convective Cold Pools

Cold pools produced by convective storms play an important role in Earth's climate system. However, a common framework does not exist for objectively identifying convective cold pools in observations and models. The present study investigates convective cold pools within a simulation of tropical continental convection that uses a cloud-resolving model with a coupled land-surface model. Multiple variables are assessed for their potential in identifying convective cold pool boundaries, and a novel technique is developed and tested for identifying and tracking cold pools in numerical model simulations. This algorithm is based on surface rainfall rates and radial gradients in the density potential temperature field. The algorithm successfully identifies near-surface cold pool boundaries and is able to distinguish between connected cold pools. Once cold pools have been identified and tracked, composites of cold pool evolution are then constructed, and average cold pool properties are investigated. Wet patches are found to develop within the centers of cold pools where the ground has been soaked with rainwater. These wet patches help to maintain cool surface temperatures and reduce cold pool dissipation, which has implications for the development of subsequent convection.
ORCiD logo [1] ; ORCiD logo [1]
  1. Colorado State Univ., Fort Collins, CO (United States). Dept. of Atmospheric Science
Publication Date:
Grant/Contract Number:
Published Article
Journal Name:
Journal of Advances in Modeling Earth Systems
Additional Journal Information:
Journal Volume: 9; Journal Issue: 2; Journal ID: ISSN 1942-2466
American Geophysical Union (AGU)
Research Org:
Colorado State Univ., Fort Collins, CO (United States)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Country of Publication:
United States
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1356248; OSTI ID: 1393566