skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reactive nanolaminate pulsed-laser ignition mechanism: Modeling and experimental evidence of diffusion limited reactions

Abstract

We irradiated Al/Pt nanolaminates with a bilayer thickness (tb, width of an Al/Pt pair-layer) of 164 nm with single laser pulses with durations of 10 ms and 0.5 ms at 189 W/cm2 and 1189 W/cm2, respectively. The time to ignition was measured for each pulse, and shorter ignition times were observed for the higher power/shorter pulse width. While the shorter pulse shows uniform brightness, videographic images of the irradiated area shortly after ignition show a non-uniform radial brightness for the longer pulse. A diffusion-limited single step reaction mechanism was implemented in a finite element package to model the progress from reactants to products at both pulse widths. Finally, the model captures well both the observed ignition delay and qualitative observations regarding the non-uniform radial temperature.

Authors:
 [1];  [1];  [1];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1356213
Report Number(s):
SAND2017-3199J
Journal ID: ISSN 0021-8979; 652034
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 121; Journal Issue: 13; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS; 36 MATERIALS SCIENCE

Citation Formats

Yarrington, C. D., Abere, M. J., Adams, D. P., and Hobbs, M. L. Reactive nanolaminate pulsed-laser ignition mechanism: Modeling and experimental evidence of diffusion limited reactions. United States: N. p., 2017. Web. doi:10.1063/1.4979578.
Yarrington, C. D., Abere, M. J., Adams, D. P., & Hobbs, M. L. Reactive nanolaminate pulsed-laser ignition mechanism: Modeling and experimental evidence of diffusion limited reactions. United States. doi:10.1063/1.4979578.
Yarrington, C. D., Abere, M. J., Adams, D. P., and Hobbs, M. L. Mon . "Reactive nanolaminate pulsed-laser ignition mechanism: Modeling and experimental evidence of diffusion limited reactions". United States. doi:10.1063/1.4979578. https://www.osti.gov/servlets/purl/1356213.
@article{osti_1356213,
title = {Reactive nanolaminate pulsed-laser ignition mechanism: Modeling and experimental evidence of diffusion limited reactions},
author = {Yarrington, C. D. and Abere, M. J. and Adams, D. P. and Hobbs, M. L.},
abstractNote = {We irradiated Al/Pt nanolaminates with a bilayer thickness (tb, width of an Al/Pt pair-layer) of 164 nm with single laser pulses with durations of 10 ms and 0.5 ms at 189 W/cm2 and 1189 W/cm2, respectively. The time to ignition was measured for each pulse, and shorter ignition times were observed for the higher power/shorter pulse width. While the shorter pulse shows uniform brightness, videographic images of the irradiated area shortly after ignition show a non-uniform radial brightness for the longer pulse. A diffusion-limited single step reaction mechanism was implemented in a finite element package to model the progress from reactants to products at both pulse widths. Finally, the model captures well both the observed ignition delay and qualitative observations regarding the non-uniform radial temperature.},
doi = {10.1063/1.4979578},
journal = {Journal of Applied Physics},
number = 13,
volume = 121,
place = {United States},
year = {2017},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A generalized reduced model of uniform and self-propagating reactions in reactive nanolaminates
journal, September 2013


A Simplified Probabilistic Model of Self-Propagating Reactions in Randomly Layered Nanolaminates
journal, October 2009

  • Knio, Omar M.; Besnoin, Etienne; Xun, Yuwei
  • Journal of Computational and Theoretical Nanoscience, Vol. 6, Issue 10
  • DOI: 10.1166/jctn.2009.1286

Conditions for combustion synthesis in nanosized Ni/Al films on a substrate
journal, April 2007


The dynamics of Al/Pt reactive multilayer ignition via pulsed-laser irradiation
journal, December 2015

  • Murphy, Ryan D.; Reeves, Robert V.; Yarrington, Cole D.
  • Applied Physics Letters, Vol. 107, Issue 23
  • DOI: 10.1063/1.4937161

Effect of thermal properties on self-propagating fronts in reactive nanolaminates
journal, July 2011

  • Alawieh, Leen; Knio, Omar M.; Weihs, Timothy P.
  • Journal of Applied Physics, Vol. 110, Issue 1
  • DOI: 10.1063/1.3599847

Nanosecond laser induced ignition thresholds and reaction velocities of energetic bimetallic nanolaminates
journal, September 2008

  • Picard, Yoosuf N.; McDonald, Joel P.; Friedmann, Thomas A.
  • Applied Physics Letters, Vol. 93, Issue 10
  • DOI: 10.1063/1.2981570

Reactive multilayers fabricated by vapor deposition: A critical review
journal, February 2015


Magnetron Sputtered Al‐CuO Nanolaminates: Effect of Stoichiometry and Layers Thickness on Energy Release and Burning Rate
journal, April 2014

  • Bahrami, Mehdi; Taton, Guillaume; Conédéra, Véronique
  • Propellants, Explosives, Pyrotechnics, Vol. 39, Issue 3
  • DOI: 10.1002/prep.201300080

Imaging of Transient Structures Using Nanosecond in Situ TEM
journal, September 2008


Theoretical models for the combustion of alloyable materials
journal, September 1992

  • Armstrong, Robert
  • Metallurgical Transactions A, Vol. 23, Issue 9
  • DOI: 10.1007/BF02658035

The combustion synthesis of multilayer NiAl systems
journal, May 1994


Models for Gasless Combustion in Layered Materials and Random Media
journal, June 1990


Numerical predictions of oscillatory combustion in reactive multilayers
journal, July 1999

  • Jayaraman, S.; Knio, O. M.; Mann, A. B.
  • Journal of Applied Physics, Vol. 86, Issue 2
  • DOI: 10.1063/1.370807

Direct observation of spinlike reaction fronts in planar energetic multilayer foils
journal, January 2009

  • McDonald, Joel P.; Hodges, V. Carter; Jones, Eric D.
  • Applied Physics Letters, Vol. 94, Issue 3
  • DOI: 10.1063/1.3070119

Simulation of reactive nanolaminates using reduced models: I. Basic formulation
journal, February 2010


Reaction pathway of Ni/Al clad particles under thermal loading: A molecular dynamics simulation
journal, December 2013


Modeling and characterizing the propagation velocity of exothermic reactions in multilayer foils
journal, August 1997

  • Mann, A. B.; Gavens, A. J.; Reiss, M. E.
  • Journal of Applied Physics, Vol. 82, Issue 3
  • DOI: 10.1063/1.365886

Self-sustained waves of exothermic dissolution in reactive multilayer nano-foils
journal, August 2012

  • Rogachev, A. S.; Vadchenko, S. G.; Mukasyan, A. S.
  • Applied Physics Letters, Vol. 101, Issue 6
  • DOI: 10.1063/1.4745201

Studying exothermic reactions in the Ni-Al system at rapid heating rates using a nanocalorimeter
journal, April 2013

  • Swaminathan, P.; Grapes, M. D.; Woll, K.
  • Journal of Applied Physics, Vol. 113, Issue 14
  • DOI: 10.1063/1.4799628

Bayesian Inference of Atomic Diffusivity in a Binary Ni/Al System Based on Molecular Dynamics
journal, January 2011

  • Rizzi, F.; Salloum, M.; Marzouk, Y. M.
  • Multiscale Modeling & Simulation, Vol. 9, Issue 1
  • DOI: 10.1137/10080590X

Exothermic reaction waves in multilayer nanofilms
journal, January 2008


Propagation of gasless reactions in solids—I. Analytical study of exothermic intermetallic reaction rates
journal, August 1973


Numerical study of the effect of heat losses on self-propagating reactions in multilayer foils
journal, January 2001


Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils
journal, February 2000

  • Gavens, A. J.; Van Heerden, D.; Mann, A. B.
  • Journal of Applied Physics, Vol. 87, Issue 3, p. 1255-1263
  • DOI: 10.1063/1.372005

Modeling of the self-propagating reactions of nickel and aluminum multilayered foils
journal, April 2009

  • Gunduz, Ibrahim Emre; Fadenberger, Konrad; Kokonou, Maria
  • Journal of Applied Physics, Vol. 105, Issue 7
  • DOI: 10.1063/1.3091284

Time-resolved x-ray microdiffraction studies of phase transformations during rapidly propagating reactions in Al/Ni and Zr/Ni multilayer foils
journal, June 2010

  • Trenkle, J. C.; Koerner, L. J.; Tate, M. W.
  • Journal of Applied Physics, Vol. 107, Issue 11
  • DOI: 10.1063/1.3428471

Heat transfer in reactive Co/Al nanolaminates
conference, June 2008

  • Hobbs, M. L.; Adams, D. P.; McDonald, J. P.
  • HEAT TRANSFER 2008, Advanced Computational Methods in Heat Transfer X
  • DOI: 10.2495/HT080121

Modeling and quantitative nanocalorimetric analysis to assess interdiffusion in a Ni/Al bilayer
journal, December 2011

  • Vohra, M.; Grapes, M.; Swaminathan, P.
  • Journal of Applied Physics, Vol. 110, Issue 12
  • DOI: 10.1063/1.3671639

Reactive Ni/Ti nanolaminates
journal, November 2009

  • Adams, D. P.; Rodriguez, M. A.; McDonald, J. P.
  • Journal of Applied Physics, Vol. 106, Issue 9, Article No. 093505
  • DOI: 10.1063/1.3253591

Enhancing the Reactivity of Al/CuO Nanolaminates by Cu Incorporation at the Interfaces
journal, May 2015

  • Marín, Lorena; Nanayakkara, Charith E.; Veyan, Jean-Francois
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 22
  • DOI: 10.1021/acsami.5b02653

Self-propagating, high-temperature combustion synthesis of rhombohedral AlPt thin films
journal, December 2006

  • Adams, D. P.; Rodriguez, M. A.; Tigges, C. P.
  • Journal of Materials Research, Vol. 21, Issue 12
  • DOI: 10.1557/jmr.2006.0387

Simulation of reactive nanolaminates using reduced models: II. Normal propagation
journal, March 2010


A molecular dynamics study of the role of pressure on the response of reactive materials to thermal initiation
journal, May 2010

  • Weingarten, N. Scott; Mattson, William D.; Yau, Anthony D.
  • Journal of Applied Physics, Vol. 107, Issue 9
  • DOI: 10.1063/1.3340965

Microstructural study of an oscillatory formation reaction in nanostructured reactive multilayer foils
journal, October 2005

  • Trenkle, J. C.; Wang, J.; Weihs, T. P.
  • Applied Physics Letters, Vol. 87, Issue 15
  • DOI: 10.1063/1.2099544

Thresholds for igniting exothermic reactions in Al/Ni multilayers using pulses of electrical, mechanical, and thermal energy
journal, January 2013

  • Fritz, Gregory M.; Spey, Stephen J.; Grapes, Michael D.
  • Journal of Applied Physics, Vol. 113, Issue 1
  • DOI: 10.1063/1.4770478

Effect of reactant and product melting on self-propagating reactions in multilayer foils
journal, November 2002

  • Besnoin, Etienne; Cerutti, Stefano; Knio, Omar M.
  • Journal of Applied Physics, Vol. 92, Issue 9
  • DOI: 10.1063/1.1509840

Phase transformations during rapid heating of Al/Ni multilayer foils
journal, August 2008

  • Trenkle, Jonathan C.; Koerner, Lucas J.; Tate, Mark W.
  • Applied Physics Letters, Vol. 93, Issue 8
  • DOI: 10.1063/1.2975830