skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reproducibility in density functional theory calculations of solids

Abstract

Density functional theory (DFT) is now routinely used for simulating material properties. Many software packages are available, which makes it challenging to know which are the best to use for a specific calculation. Lejaeghere et al. compared the calculated values for the equation of states for 71 elemental crystals from 15 different widely used DFT codes employing 40 different potentials (see the Perspective by Skylaris). Although there were variations in the calculated values, most recent codes and methods converged toward a single value, with errors comparable to those of experiment.

Authors:
 [1];  [2];  [3];  [4];  [2];  [5];  [6];  [7];  [8];  [9];  [9];  [10];  [11];  [12];  [13];  [14];  [12];  [11];  [15];  [10] more »;  [16];  [17];  [18];  [17];  [19];  [11];  [13];  [20];  [21];  [22];  [23];  [12];  [24];  [25];  [26];  [27];  [28];  [29];  [12];  [30];  [31];  [27];  [32];  [33];  [12];  [34];  [35];  [36];  [37];  [22];  [38];  [28];  [17];  [18];  [39];  [20];  [4];  [40];  [15];  [41];  [42];  [25];  [43];  [17];  [1]; ORCiD logo [44];  [26];  [45];  [46] « less
  1. Ghent Univ., Zwijnaarde (Belgium). Center for Molecular Modeling
  2. Forschungszentrum Julich (Germany). Jülich Aachen Research Alliance (JARA). Peter Grünberg Inst. and Inst. for Advanced Simulation
  3. Åbo Akademi, Turku (Finland). Dept. of Physics; Aalto Univ. School of Science, Aalto (Finland). Centre of Excellence in Computational Nanoscience (COMP) and Dept. of Applied Physics
  4. Vienna Univ. of Technology (Austria). Inst. of Materials Chemistry
  5. Duke Univ., Durham, NC (United States). Dept. of Mechanical Engineering and Materials Science
  6. Univ. of Grenoble Alpes (France). Inst. Nanosciences et Cryogénie–Modeling and Material Exploration Dept. (INAC-MEM), Lab. de Simulation Atomistique (L_Sim); Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA), Grenoble (France)
  7. Ecole Polytechnique Federale Lausanne (Switzlerland). Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL)
  8. Univ. of Durham, Durham (United Kingdom). Dept. of Physics
  9. International School for Advanced Studies (SISSA) and DEMOCRITOS, Consiglio Nazionale delle Ricerche–Istituto Officina dei Materiali (CNR-IOM), Trieste (Italy)
  10. Univ. of Grenoble Alpes (France). Inst. Nanosciences et Cryogénie–Modeling and Material Exploration Dept. (INAC-MEM), Lab. de Simulation Atomistique (L_Sim); Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA), Grenoble (France)
  11. Max-Planck-Inst. fur Mikrostrukturphysik, Halle (Germany)
  12. Uppsala Univ. (Sweden). Dept. of Physics and Astronomy, Division of Materials Theory
  13. Humboldt Univ. of Berlin (Germany). Inst. für Physik and Integrative Research Institute for the Sciences (IRIS)–Adlershof; Fritz-Haber-Inst. der Max-Planck-Gesellschaft, Berlin (Germany)
  14. Technical Univ. of Denmark, Lyngby (Denmark). Center for Atomic-scale Materials Design, Dept. of Physics
  15. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States). Material Measurement Lab.
  16. Univ. of Udine, Udine (Italy). Dept. of Mathematics, Computer Science, and Physics
  17. Univ. catholique de Louvain, Louvain-la-Neuve, (Belgium)
  18. Univ. Basel, Basel (Switzerland). Inst. für Physik
  19. Uppsala Univ. (Sweden). Dept. of Physics and Astronomy, Division of Materials Theory; Harvard Univ., Cambridge, MA (United States). School of Engineering and Applied Sciences
  20. Univ. of California, Davis, CA (United States). Dept. of Computer Science
  21. Rutgers Univ., Piscataway, NJ (United States). Dept. of Physics and Astronomy; Mat-Sim Research, Murray Hill, NJ (United States)
  22. Univ. of York (United Kingdom). Dept. of Physics
  23. Wake Forest Univ., Winston-Salem, NC (United States). Dept. of Physics
  24. Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL), Scientific Computing Dept.
  25. Alternative Energies and Atomic Energy Commission (CEA), Arpajon (France)
  26. Univ. of Oxford (United Kingdom). Dept. of Materials
  27. Univ. of Vienna (Austria). Faculty of Physics and Center for Computational Materials Science
  28. Leibniz Inst. for Solid State and Materials Research (IFW), Dresden (Germany); Technische Univ. Dresden, Dresden (Germany)
  29. Ecole Polytechnique Federale Lausanne (Switzlerland); International School for Advanced Studies (SISSA) and DEMOCRITOS, Consiglio Nazionale delle Ricerche–Istituto Officina dei Materiali (CNR-IOM), Trieste (Italy)
  30. Uppsala Univ. (Sweden). Dept. of Physics and Astronomy, Division of Materials Theory; Radboud Univ., Nijmegen (Netherlands). Inst. for Molecules and Materials
  31. Humboldt Univ. of Berlin (Germany). Inst. für Physik and Integrative Research Institute for the Sciences (IRIS)–Adlershof
  32. Ecole Polytechnique Federale Lausanne (Switzlerland)
  33. Leibniz Inst. for Solid State and Materials Research (IFW), Dresden (Germany)
  34. Univ. of Tokyo, Kashiwa (Japan). Inst. for Solid State Physics
  35. Sorbonne Univ.-Pierre and Marie Curie Univ., Paris (France). Inst. de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC); Centre National de la Recherche Scientifique (CNRS), Paris (France); Muséum National d’Histoire Naturelle, Institut de Recherche pour le Développement (IRD), Paris (France)
  36. Univ. of Cambridge (United Kingdom). Dept. of Materials Science and Metallurgy
  37. Ghent Univ., Zwijnaarde (Belgium). Center for Molecular Modeling, and High Performance Computing Unit
  38. Royal Holloway, Univ. of London, Egham (United Kingdom). Dept. of Physics; Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab., ISIS Neutron Source
  39. Fritz-Haber-Inst. der Max-Planck-Gesellschaft, Berlin (Germany); Univ. of California, Santa Barbara, CA (United States). Dept. of Chemistry and Biochemistry and Materials Dept.
  40. Max-Planck-Inst. für Mikrostrukturphysik, Halle (Germany)
  41. Vienna Univ. of Technology (Austria). Inst. for Solid State Physics
  42. Fritz-Haber-Inst. der Max-Planck-Gesellschaft, Berlin (Germany)
  43. Rutgers Univ., Piscataway, NJ (United States). Dept. of Physics and Astronomy
  44. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  45. Harbin Inst. of Technology (China). Inst. of Theoretical and Simulational Chemistry, Academy of Fundamental and Interdisciplinary Sciences
  46. Ghent Univ., Zwijnaarde (Belgium). Center for Molecular Modeling, and Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1355846
Alternate Identifier(s):
OSTI ID: 1499324
Report Number(s):
LA-UR-16-21415
Journal ID: ISSN 0036-8075
Grant/Contract Number:  
89233218CNA000001; DOE-BES DE-SC0008938
Resource Type:
Published Article
Journal Name:
Science
Additional Journal Information:
Journal Volume: 351; Journal Issue: 6280; Journal ID: ISSN 0036-8075
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Density Functional Theory; Electronic Structure

Citation Formats

Lejaeghere, Kurt, Bihlmayer, Gustav, Bjorkman, Torbjorn, Blaha, Peter, Blugel, Stefan, Blum, Volker, Caliste, Damien, Castelli, Ivano E., Clark, Stewart J., Dal Corso, Andrea, de Gironcoli, Stefano, Deutsch, Thierry, Dewhurst, John Kay, Di Marco, Igor, Draxl, Claudia, Dulak, Marcin, Eriksson, Olle, Flores-Livas, Jose A., Garrity, Kevin F., Genovese, Luigi, Giannozzi, Paolo, Giantomassi, Matteo, Goedecker, Stefan, Gonze, Xavier, Granas, Oscar, Gross, E. K. U., Gulans, Andris, Gygi, Francois, Hamann, D. R., Hasnip, Phil J., Holzwarth, N. A. W., Iusan, Diana, Jochym, Dominik B., Jollet, Francois, Jones, Daniel, Kresse, Georg, Koepernik, Klaus, Kucukbenli, Emine, Kvashnin, Yaroslav O., Locht, Inka L. M., Lubeck, Sven, Marsman, Martijn, Marzari, Nicola, Nitzsche, Ulrike, Nordstrom, Lars, Ozaki, Taisuke, Paulatto, Lorenzo, Pickard, Chris J., Poelmans, Ward, Probert, Matt I. J., Refson, Keith, Richter, Manuel, Rignanese, Gian-Marco, Saha, Santanu, Scheffler, Matthias, Schlipf, Martin, Schwarz, Karlheinz, Sharma, Sangeeta, Tavazza, Francesca, Thunstrom, Patrik, Tkatchenko, Alexandre, Torrent, Marc, Vanderbilt, David, van Setten, Michiel J., Van Speybroeck, Veronique, Wills, John Michael, Yates, Jonathan R., Zhang, Guo-Xu, and Cottenier, Stefaan. Reproducibility in density functional theory calculations of solids. United States: N. p., 2016. Web. doi:10.1126/science.aad3000.
Lejaeghere, Kurt, Bihlmayer, Gustav, Bjorkman, Torbjorn, Blaha, Peter, Blugel, Stefan, Blum, Volker, Caliste, Damien, Castelli, Ivano E., Clark, Stewart J., Dal Corso, Andrea, de Gironcoli, Stefano, Deutsch, Thierry, Dewhurst, John Kay, Di Marco, Igor, Draxl, Claudia, Dulak, Marcin, Eriksson, Olle, Flores-Livas, Jose A., Garrity, Kevin F., Genovese, Luigi, Giannozzi, Paolo, Giantomassi, Matteo, Goedecker, Stefan, Gonze, Xavier, Granas, Oscar, Gross, E. K. U., Gulans, Andris, Gygi, Francois, Hamann, D. R., Hasnip, Phil J., Holzwarth, N. A. W., Iusan, Diana, Jochym, Dominik B., Jollet, Francois, Jones, Daniel, Kresse, Georg, Koepernik, Klaus, Kucukbenli, Emine, Kvashnin, Yaroslav O., Locht, Inka L. M., Lubeck, Sven, Marsman, Martijn, Marzari, Nicola, Nitzsche, Ulrike, Nordstrom, Lars, Ozaki, Taisuke, Paulatto, Lorenzo, Pickard, Chris J., Poelmans, Ward, Probert, Matt I. J., Refson, Keith, Richter, Manuel, Rignanese, Gian-Marco, Saha, Santanu, Scheffler, Matthias, Schlipf, Martin, Schwarz, Karlheinz, Sharma, Sangeeta, Tavazza, Francesca, Thunstrom, Patrik, Tkatchenko, Alexandre, Torrent, Marc, Vanderbilt, David, van Setten, Michiel J., Van Speybroeck, Veronique, Wills, John Michael, Yates, Jonathan R., Zhang, Guo-Xu, & Cottenier, Stefaan. Reproducibility in density functional theory calculations of solids. United States. doi:10.1126/science.aad3000.
Lejaeghere, Kurt, Bihlmayer, Gustav, Bjorkman, Torbjorn, Blaha, Peter, Blugel, Stefan, Blum, Volker, Caliste, Damien, Castelli, Ivano E., Clark, Stewart J., Dal Corso, Andrea, de Gironcoli, Stefano, Deutsch, Thierry, Dewhurst, John Kay, Di Marco, Igor, Draxl, Claudia, Dulak, Marcin, Eriksson, Olle, Flores-Livas, Jose A., Garrity, Kevin F., Genovese, Luigi, Giannozzi, Paolo, Giantomassi, Matteo, Goedecker, Stefan, Gonze, Xavier, Granas, Oscar, Gross, E. K. U., Gulans, Andris, Gygi, Francois, Hamann, D. R., Hasnip, Phil J., Holzwarth, N. A. W., Iusan, Diana, Jochym, Dominik B., Jollet, Francois, Jones, Daniel, Kresse, Georg, Koepernik, Klaus, Kucukbenli, Emine, Kvashnin, Yaroslav O., Locht, Inka L. M., Lubeck, Sven, Marsman, Martijn, Marzari, Nicola, Nitzsche, Ulrike, Nordstrom, Lars, Ozaki, Taisuke, Paulatto, Lorenzo, Pickard, Chris J., Poelmans, Ward, Probert, Matt I. J., Refson, Keith, Richter, Manuel, Rignanese, Gian-Marco, Saha, Santanu, Scheffler, Matthias, Schlipf, Martin, Schwarz, Karlheinz, Sharma, Sangeeta, Tavazza, Francesca, Thunstrom, Patrik, Tkatchenko, Alexandre, Torrent, Marc, Vanderbilt, David, van Setten, Michiel J., Van Speybroeck, Veronique, Wills, John Michael, Yates, Jonathan R., Zhang, Guo-Xu, and Cottenier, Stefaan. Thu . "Reproducibility in density functional theory calculations of solids". United States. doi:10.1126/science.aad3000.
@article{osti_1355846,
title = {Reproducibility in density functional theory calculations of solids},
author = {Lejaeghere, Kurt and Bihlmayer, Gustav and Bjorkman, Torbjorn and Blaha, Peter and Blugel, Stefan and Blum, Volker and Caliste, Damien and Castelli, Ivano E. and Clark, Stewart J. and Dal Corso, Andrea and de Gironcoli, Stefano and Deutsch, Thierry and Dewhurst, John Kay and Di Marco, Igor and Draxl, Claudia and Dulak, Marcin and Eriksson, Olle and Flores-Livas, Jose A. and Garrity, Kevin F. and Genovese, Luigi and Giannozzi, Paolo and Giantomassi, Matteo and Goedecker, Stefan and Gonze, Xavier and Granas, Oscar and Gross, E. K. U. and Gulans, Andris and Gygi, Francois and Hamann, D. R. and Hasnip, Phil J. and Holzwarth, N. A. W. and Iusan, Diana and Jochym, Dominik B. and Jollet, Francois and Jones, Daniel and Kresse, Georg and Koepernik, Klaus and Kucukbenli, Emine and Kvashnin, Yaroslav O. and Locht, Inka L. M. and Lubeck, Sven and Marsman, Martijn and Marzari, Nicola and Nitzsche, Ulrike and Nordstrom, Lars and Ozaki, Taisuke and Paulatto, Lorenzo and Pickard, Chris J. and Poelmans, Ward and Probert, Matt I. J. and Refson, Keith and Richter, Manuel and Rignanese, Gian-Marco and Saha, Santanu and Scheffler, Matthias and Schlipf, Martin and Schwarz, Karlheinz and Sharma, Sangeeta and Tavazza, Francesca and Thunstrom, Patrik and Tkatchenko, Alexandre and Torrent, Marc and Vanderbilt, David and van Setten, Michiel J. and Van Speybroeck, Veronique and Wills, John Michael and Yates, Jonathan R. and Zhang, Guo-Xu and Cottenier, Stefaan},
abstractNote = {Density functional theory (DFT) is now routinely used for simulating material properties. Many software packages are available, which makes it challenging to know which are the best to use for a specific calculation. Lejaeghere et al. compared the calculated values for the equation of states for 71 elemental crystals from 15 different widely used DFT codes employing 40 different potentials (see the Perspective by Skylaris). Although there were variations in the calculated values, most recent codes and methods converged toward a single value, with errors comparable to those of experiment.},
doi = {10.1126/science.aad3000},
journal = {Science},
number = 6280,
volume = 351,
place = {United States},
year = {2016},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1126/science.aad3000

Citation Metrics:
Cited by: 290 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Ab initio study of the thermodynamic properties of nonmagnetic elementary fcc metals: Exchange-correlation-related error bars and chemical trends
journal, July 2007


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Calculation of the lattice constant of solids with semilocal functionals
journal, February 2009


A technique for relativistic spin-polarised calculations
journal, August 1977


Density Functionals with Broad Applicability in Chemistry
journal, February 2008

  • Zhao, Yan; Truhlar, Donald G.
  • Accounts of Chemical Research, Vol. 41, Issue 2
  • DOI: 10.1021/ar700111a

Projector augmented-wave method
journal, December 1994


Daubechies wavelets as a basis set for density functional pseudopotential calculations
journal, July 2008

  • Genovese, Luigi; Neelov, Alexey; Goedecker, Stefan
  • The Journal of Chemical Physics, Vol. 129, Issue 1
  • DOI: 10.1063/1.2949547

Screened hybrid density functionals applied to solids
journal, April 2006

  • Paier, J.; Marsman, M.; Hummer, K.
  • The Journal of Chemical Physics, Vol. 124, Issue 15
  • DOI: 10.1063/1.2187006

Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional
journal, November 2005

  • Heyd, Jochen; Peralta, Juan E.; Scuseria, Gustavo E.
  • The Journal of Chemical Physics, Vol. 123, Issue 17
  • DOI: 10.1063/1.2085170

Ab-initio simulations of materials using VASP: Density-functional theory and beyond
journal, October 2008

  • Hafner, Jürgen
  • Journal of Computational Chemistry, Vol. 29, Issue 13
  • DOI: 10.1002/jcc.21057

Atomic volumes of rare-earth metals under pressures to 40 GPa and above
journal, March 1992


QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Finite Elastic Strain of Cubic Crystals
journal, June 1947


exciting: a full-potential all-electron package implementing density-functional theory and many-body perturbation theory
journal, August 2014

  • Gulans, Andris; Kontur, Stefan; Meisenbichler, Christian
  • Journal of Physics: Condensed Matter, Vol. 26, Issue 36
  • DOI: 10.1088/0953-8984/26/36/363202

Norm-conserving pseudopotentials with chemical accuracy compared to all-electron calculations
journal, March 2013

  • Willand, Alex; Kvashnin, Yaroslav O.; Genovese, Luigi
  • The Journal of Chemical Physics, Vol. 138, Issue 10
  • DOI: 10.1063/1.4793260

Relativistic regular approximations revisited: An infinite-order relativistic approximation
journal, July 1999

  • Dyall, Kenneth G.; van Lenthe, Erik
  • The Journal of Chemical Physics, Vol. 111, Issue 4
  • DOI: 10.1063/1.479395

A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions
journal, January 2011

  • Goerigk, Lars; Grimme, Stefan
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 14
  • DOI: 10.1039/c0cp02984j

AiiDA: automated interactive infrastructure and database for computational science
journal, January 2016


Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method
journal, June 2010


Norm-Conserving Pseudopotentials
journal, November 1979


Molecular and solid-state tests of density functional approximations: LSD, GGAs, and meta-GGAs
journal, January 1999


Optimized norm-conserving Vanderbilt pseudopotentials
journal, August 2013


Prediction Uncertainty of Density Functional Approximations for Properties of Crystals with Cubic Symmetry
journal, December 2014

  • Pernot, Pascal; Civalleri, Bartolomeo; Presti, Davide
  • The Journal of Physical Chemistry A, Vol. 119, Issue 21
  • DOI: 10.1021/jp509980w

Efficacious Form for Model Pseudopotentials
journal, May 1982


No more hidden solutions in bioinformatics
journal, May 2015


ABINIT: First-principles approach to material and nanosystem properties
journal, December 2009


Performance on molecules, surfaces, and solids of the Wu-Cohen GGA exchange-correlation energy functional
journal, March 2007


Pseudopotentials periodic table: From H to Pu
journal, December 2014


Tests of a ladder of density functionals for bulk solids and surfaces
journal, February 2004


Titanium impurities in silicon, diamond, and silicon carbide
journal, January 2004


A Scientist's Nightmare: Software Problem Leads to Five Retractions
journal, December 2006


Assessing the performance of recent density functionals for bulk solids
journal, April 2009


Efficient linearization of the augmented plane-wave method
journal, October 2001


Numeric atom-centered-orbital basis sets with valence-correlation consistency from H to Ar
journal, December 2013


Real-space grid implementation of the projector augmented wave method
journal, January 2005


Daubechies wavelets for linear scaling density functional theory
journal, May 2014

  • Mohr, Stephan; Ratcliff, Laura E.; Boulanger, Paul
  • The Journal of Chemical Physics, Vol. 140, Issue 20
  • DOI: 10.1063/1.4871876

Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme
journal, January 1999


First-Principles Study of Boron Diffusion in Silicon
journal, November 1999


Pseudopotentials for high-throughput DFT calculations
journal, January 2014


Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


Numerical atomic basis orbitals from H to Kr
journal, May 2004


The case for open computer programs
journal, February 2012

  • Ince, Darrel C.; Hatton, Leslie; Graham-Cumming, John
  • Nature, Vol. 482, Issue 7386
  • DOI: 10.1038/nature10836

Density functional theory: Its origins, rise to prominence, and future
journal, August 2015


Quantum Distributions of Muonium and Hydrogen in Crystalline Silicon
journal, August 1998


Generation of Projector Augmented-Wave atomic data: A 71 element validated table in the XML format
journal, April 2014

  • Jollet, François; Torrent, Marc; Holzwarth, Natalie
  • Computer Physics Communications, Vol. 185, Issue 4
  • DOI: 10.1016/j.cpc.2013.12.023

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Wave Functions in a Periodic Potential
journal, May 1937


Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory
journal, June 1999


On the Numerical Calculation of the Density of States and Related Properties
journal, December 1972


First-principles computation of material properties: the ABINIT software project
journal, November 2002


Nonlocal Hermitian norm-conserving Vanderbilt pseudopotential
journal, March 1993


Structural, electronic, and effective-mass properties of silicon and zinc-blende group-III nitride semiconductor compounds
journal, April 2001


Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals
journal, May 2005


Applications of the generalized-gradient approximation to atoms, clusters, and solids
journal, September 1997


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set
journal, June 2005

  • Paier, Joachim; Hirschl, Robin; Marsman, Martijn
  • The Journal of Chemical Physics, Vol. 122, Issue 23
  • DOI: 10.1063/1.1926272

Inhomogeneous Electron Gas
journal, November 1964


Variationally optimized atomic orbitals for large-scale electronic structures
journal, April 2003


Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation
journal, January 1997

  • Curtiss, Larry A.; Raghavachari, Krishnan; Redfern, Paul C.
  • The Journal of Chemical Physics, Vol. 106, Issue 3
  • DOI: 10.1063/1.473182

Linear methods in band theory
journal, October 1975


AFLOW: An automatic framework for high-throughput materials discovery
journal, June 2012


ESTEST: a framework for the validation and verification of electronic structure codes
journal, January 2010


Ab initio molecular simulations with numeric atom-centered orbitals
journal, November 2009

  • Blum, Volker; Gehrke, Ralf; Hanke, Felix
  • Computer Physics Communications, Vol. 180, Issue 11
  • DOI: 10.1016/j.cpc.2009.06.022

Soft self-consistent pseudopotentials in a generalized eigenvalue formalism
journal, April 1990


Optimization algorithm for the generation of ONCV pseudopotentials
journal, November 2015


Comparison of the full-potential and frozen-core approximation approaches to density-functional calculations of surfaces
journal, January 2006


Error Estimates for Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-State Elemental Crystals
journal, October 2013

  • Lejaeghere, K.; Van Speybroeck, V.; Van Oost, G.
  • Critical Reviews in Solid State and Materials Sciences, Vol. 39, Issue 1
  • DOI: 10.1080/10408436.2013.772503

Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure
journal, April 2008


Relativistic total energy using regular approximations
journal, December 1994

  • van Lenthe, E.; Baerends, E. J.; Snijders, J. G.
  • The Journal of Chemical Physics, Vol. 101, Issue 11
  • DOI: 10.1063/1.467943

Equations of State for Cu, Ag, and Au for Wide Ranges in Temperature and Pressure up to 500 GPa and Above
journal, March 2001

  • Holzapfel, W. B.; Hartwig, M.; Sievers, W.
  • Journal of Physical and Chemical Reference Data, Vol. 30, Issue 2
  • DOI: 10.1063/1.1370170

Exchange energy in the local Airy gas approximation
journal, October 2000


Improved tetrahedron method for Brillouin-zone integrations
journal, June 1994


Dissociative adsorption of PH 3 on the Si(001) surface
journal, March 2001


Generalized norm-conserving pseudopotentials
journal, August 1989


The Seven Sins in Academic Behavior in the Natural Sciences
journal, December 2012

  • van Gunsteren, Wilfred F.
  • Angewandte Chemie International Edition, Vol. 52, Issue 1
  • DOI: 10.1002/anie.201204076

Methodological challenges in combining quantum-mechanical and continuum approaches for materials science applications
journal, October 2011


    Works referencing / citing this record:

    Molecular Crystal Engineering: Tuning Organic Semiconductor from p-type to n-type by Adjusting Their Substitutional Symmetry
    journal, January 2017


    Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds
    journal, February 2018

    • Mounet, Nicolas; Gibertini, Marco; Schwaller, Philippe
    • Nature Nanotechnology, Vol. 13, Issue 3
    • DOI: 10.1038/s41565-017-0035-5

    Machine learning for molecular and materials science
    journal, July 2018


    Implications of bond disorder in a S=1 kagome lattice
    journal, March 2018


    Redox-active metal–organic frameworks for energy conversion and storage
    journal, January 2019

    • Calbo, Joaquín; Golomb, Matthias J.; Walsh, Aron
    • Journal of Materials Chemistry A, Vol. 7, Issue 28
    • DOI: 10.1039/c9ta04680a

    Push it to the limit: comparing periodic and local approaches to density functional theory for intermolecular interactions
    journal, June 2018


    Using forces to accelerate first-principles anharmonic vibrational calculations
    journal, July 2017