skip to main content

DOE PAGESDOE PAGES

Title: Development of the Model of Galactic Interstellar Emission for Standard Point-Source Analysis of Fermi Large Area Telescope Data

Most of the celestial γ rays detected by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point and extended source studies rely on the modeling of this diffuse emission for accurate characterization. We describe here the development of the Galactic Interstellar Emission Model (GIEM) that is the standard adopted by the LAT Collaboration and is publicly available. The model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse Compton emission produced in the Galaxy. We also include in the GIEM large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra con rm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20° and we observe an enhanced emission toward their base extending in the North and South Galactic direction and located within ~4° of the Galactic Center.
Authors:
 [1]
  1. Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France); et al.
Publication Date:
Grant/Contract Number:
AC02-76SF00515
Type:
Accepted Manuscript
Journal Name:
The Astrophysical Journal. Supplement Series (Online)
Additional Journal Information:
Journal Name: The Astrophysical Journal. Supplement Series (Online); Journal Volume: 223; Journal Issue: 2; Journal ID: ISSN 1538-4365
Publisher:
American Astronomical Society/IOP
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org:
USDOE
Contributing Orgs:
Fermi LAT Collaboration
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS
OSTI Identifier:
1355675