skip to main content


Title: Macroporous Carbon Supported Zerovalent Iron for Remediation of Trichloroethylene

Groundwater contamination with chlorinated hydrocarbons has become a widespread problem that threatens water quality and human health. Permeable reactive barriers (PRBs), which employ zerovalent iron, are effective for remediation; however, a need exists to reduce the economic and environmental costs associated with constructing PRBs. Here, we present a method to produce zerovalent iron supported on macroporous carbon using only lignin and magnetite. Biochar- ZVI (BC-ZVI) produced by this method exhibits a broad pore size distribution with micrometer sized ZVI phases dispersed throughout a carbon matrix. X-ray diffraction revealed that pyrolysis at 900 Β°C of a 50/50 lignin$-$magnetite mixture resulted in almost complete reduction of magnetite to ZVI and that compression molding promotes iron reduction in pyrolysis due to mixing of starting materials. High temperature pyrolysis of lignin yields some graphite in BC-ZVI due to reduction of carbonaceous gases on iron oxides. TCE was removed from water as it passed through a column packed with BC-ZVI at flow rates representative of average and high groundwater flow. Lastly, one-dimensional convection$-$dispersion modeling revealed that adsorption by biochar influences TCE transport and that BC-ZVI facilitated removal of TCE from contaminated water by both adsorption and degradation.
 [1] ;  [1] ;  [1] ;  [2] ;  [2] ;  [3] ;  [1] ;  [4]
  1. Iowa State Univ., Ames, IA (United States). Dept. of Agronomy
  2. Ames Lab. and Iowa State Univ., Ames, IA (United States). Dept. of Chemistry
  3. Des Moines Water Works, Des Moines, IA (United States)
  4. Iowa State Univ., Ames, IA (United States). Dept. of Civil, Construction & Environmental Engineering, Dept. of Ag & Biosystems Engineering, Dept. of Food Science & Human Nutrition
Publication Date:
Report Number(s):
Journal ID: ISSN 2168-0485
Grant/Contract Number:
AC02-07CH11358; 2011-68005-30411403; EPS-1101284
Accepted Manuscript
Journal Name:
ACS Sustainable Chemistry & Engineering
Additional Journal Information:
Journal Volume: 5; Journal Issue: 2; Journal ID: ISSN 2168-0485
American Chemical Society (ACS)
Research Org:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); USDA; National Science Foundation (NSF)
Country of Publication:
United States
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 54 ENVIRONMENTAL SCIENCES; Trichloroethylene; Biochar; Zerovalent iron; Macroporous carbon; Permeable reactive barrier
OSTI Identifier: