DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An engineered transforming growth factor β (TGF-β) monomer that functions as a dominant negative to block TGF-β signaling

Abstract

The transforming growth factor β isoforms, TGF-β1, -β2, and -β3, are small secreted homodimeric signaling proteins with essential roles in regulating the adaptive immune system and maintaining the extracellular matrix. However, dysregulation of the TGF-β pathway is responsible for promoting the progression of several human diseases, including cancer and fibrosis. Despite the known importance of TGF-βs in promoting disease progression, no inhibitors have been approved for use in humans. Herein, we describe an engineered TGF-β monomer, lacking the heel helix, a structural motif essential for binding the TGF-β type I receptor (TβRI) but dispensable for binding the other receptor required for TGF-β signaling, the TGF-β type II receptor (TβRII), as an alternative therapeutic modality for blocking TGF-β signaling in humans. As shown through binding studies and crystallography, the engineered monomer retained the same overall structure of native TGF-β monomers and bound TβRII in an identical manner. Cell-based luciferase assays showed that the engineered monomer functioned as a dominant negative to inhibit TGF-β signaling with a Ki of 20–70 nM. Investigation of the mechanism showed that the high affinity of the engineered monomer for TβRII, coupled with its reduced ability to non-covalently dimerize and its inability to bind and recruit TβRI,more » enabled it to bind endogenous TβRII but prevented it from binding and recruiting TβRI to form a signaling complex. In conclusion, such engineered monomers provide a new avenue to probe and manipulate TGF-β signaling and may inform similar modifications of other TGF-β family members.« less

Authors:
 [1];  [1];  [2];  [2];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [1];  [2];  [2];  [3];  [2];  [1];  [1];  [1] more »;  [2] « less
  1. Univ. of Texas Health Science Center, San Antonio, TX (United States)
  2. Univ. of Pittsburgh School of Medicine, Pittsburgh, PA (United States)
  3. Human Health Therapeutics Portfolio, Montreal, QC (Canada)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Inst. of Health; Robert A. Welch Foundation; National Science Foundation (NSF); Cancer Prevention Research Inst.; American Heart Assoc.
OSTI Identifier:
1355043
Grant/Contract Number:  
GM58670; CA172886; AQ1842; P30 CA54174; GM120600; ACI-1339649; RP1450105; 15PRE25550015
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Biological Chemistry
Additional Journal Information:
Journal Volume: 292; Journal Issue: 17; Journal ID: ISSN 0021-9258
Publisher:
American Society for Biochemistry and Molecular Biology
Country of Publication:
United States
Language:
ENGLISH
Subject:
60 APPLIED LIFE SCIENCES; cancer; cell signaling; fibrosis; inhibitor; protein engineering; transforming growth factor beta (TGF-B); dominant negative

Citation Formats

Kim, Sun Kyung, Barron, Lindsey, Hinck, Cynthia S., Petrunak, Elyse M., Cano, Kristin E., Thangirala, Avinash, Iskra, Brian, Brothers, Molly, Vonberg, Machell, Leal, Belinda, Richter, Blair, Kodali, Ravindra, Taylor, Alexander B., Du, Shoucheng, Barnes, Christopher O., Sulea, Traian, Calero, Guillermo, Hart, P. John, Hart, Matthew J., Demeler, Borries, and Hinck, Andrew P. An engineered transforming growth factor β (TGF-β) monomer that functions as a dominant negative to block TGF-β signaling. United States: N. p., 2017. Web. doi:10.1074/jbc.M116.768754.
Kim, Sun Kyung, Barron, Lindsey, Hinck, Cynthia S., Petrunak, Elyse M., Cano, Kristin E., Thangirala, Avinash, Iskra, Brian, Brothers, Molly, Vonberg, Machell, Leal, Belinda, Richter, Blair, Kodali, Ravindra, Taylor, Alexander B., Du, Shoucheng, Barnes, Christopher O., Sulea, Traian, Calero, Guillermo, Hart, P. John, Hart, Matthew J., Demeler, Borries, & Hinck, Andrew P. An engineered transforming growth factor β (TGF-β) monomer that functions as a dominant negative to block TGF-β signaling. United States. https://doi.org/10.1074/jbc.M116.768754
Kim, Sun Kyung, Barron, Lindsey, Hinck, Cynthia S., Petrunak, Elyse M., Cano, Kristin E., Thangirala, Avinash, Iskra, Brian, Brothers, Molly, Vonberg, Machell, Leal, Belinda, Richter, Blair, Kodali, Ravindra, Taylor, Alexander B., Du, Shoucheng, Barnes, Christopher O., Sulea, Traian, Calero, Guillermo, Hart, P. John, Hart, Matthew J., Demeler, Borries, and Hinck, Andrew P. Wed . "An engineered transforming growth factor β (TGF-β) monomer that functions as a dominant negative to block TGF-β signaling". United States. https://doi.org/10.1074/jbc.M116.768754. https://www.osti.gov/servlets/purl/1355043.
@article{osti_1355043,
title = {An engineered transforming growth factor β (TGF-β) monomer that functions as a dominant negative to block TGF-β signaling},
author = {Kim, Sun Kyung and Barron, Lindsey and Hinck, Cynthia S. and Petrunak, Elyse M. and Cano, Kristin E. and Thangirala, Avinash and Iskra, Brian and Brothers, Molly and Vonberg, Machell and Leal, Belinda and Richter, Blair and Kodali, Ravindra and Taylor, Alexander B. and Du, Shoucheng and Barnes, Christopher O. and Sulea, Traian and Calero, Guillermo and Hart, P. John and Hart, Matthew J. and Demeler, Borries and Hinck, Andrew P.},
abstractNote = {The transforming growth factor β isoforms, TGF-β1, -β2, and -β3, are small secreted homodimeric signaling proteins with essential roles in regulating the adaptive immune system and maintaining the extracellular matrix. However, dysregulation of the TGF-β pathway is responsible for promoting the progression of several human diseases, including cancer and fibrosis. Despite the known importance of TGF-βs in promoting disease progression, no inhibitors have been approved for use in humans. Herein, we describe an engineered TGF-β monomer, lacking the heel helix, a structural motif essential for binding the TGF-β type I receptor (TβRI) but dispensable for binding the other receptor required for TGF-β signaling, the TGF-β type II receptor (TβRII), as an alternative therapeutic modality for blocking TGF-β signaling in humans. As shown through binding studies and crystallography, the engineered monomer retained the same overall structure of native TGF-β monomers and bound TβRII in an identical manner. Cell-based luciferase assays showed that the engineered monomer functioned as a dominant negative to inhibit TGF-β signaling with a Ki of 20–70 nM. Investigation of the mechanism showed that the high affinity of the engineered monomer for TβRII, coupled with its reduced ability to non-covalently dimerize and its inability to bind and recruit TβRI, enabled it to bind endogenous TβRII but prevented it from binding and recruiting TβRI to form a signaling complex. In conclusion, such engineered monomers provide a new avenue to probe and manipulate TGF-β signaling and may inform similar modifications of other TGF-β family members.},
doi = {10.1074/jbc.M116.768754},
journal = {Journal of Biological Chemistry},
number = 17,
volume = 292,
place = {United States},
year = {Wed Feb 22 00:00:00 EST 2017},
month = {Wed Feb 22 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 27 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Aneurysm Syndromes Caused by Mutations in the TGF-β Receptor
journal, August 2006

  • Loeys, Bart L.; Schwarze, Ulrike; Holm, Tammy
  • New England Journal of Medicine, Vol. 355, Issue 8
  • DOI: 10.1056/NEJMoa055695

Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins
journal, March 1993

  • Grzesiek, Stephan; Bax, Ad
  • Journal of Biomolecular NMR, Vol. 3, Issue 2
  • DOI: 10.1007/BF00178261

Crystal structure of transforming growth factor-beta 2: an unusual fold for the superfamily
journal, July 1992


Overview of the CCP 4 suite and current developments
journal, March 2011

  • Winn, Martyn D.; Ballard, Charles C.; Cowtan, Kevin D.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444910045749

Correlation of Backbone Amide and Aliphatic Side-Chain Resonances in 13C/15N-Enriched Proteins by Isotropic Mixing of 13C Magnetization
journal, February 1993

  • Grzesiek, S.; Anglister, J.; Bax, A.
  • Journal of Magnetic Resonance, Series B, Vol. 101, Issue 1
  • DOI: 10.1006/jmrb.1993.1019

TGF-β signalling is mediated by two autonomously functioning TβRI:TβRII pairs: TGF-β signals through autonomous TβRI:TβRII pairs
journal, March 2011

  • Huang, Tao; David, Laurent; Mendoza, Valentín
  • The EMBO Journal, Vol. 30, Issue 7
  • DOI: 10.1038/emboj.2011.54

Biophysical and Biochemical Analysis of Recombinant Proteins
book, January 2008


Ternary Complex of Transforming Growth Factor-β1 Reveals Isoform-specific Ligand Recognition and Receptor Recruitment in the Superfamily
journal, March 2010

  • Radaev, Sergei; Zou, Zhongcheng; Huang, Tao
  • Journal of Biological Chemistry, Vol. 285, Issue 19
  • DOI: 10.1074/jbc.M109.079921

Gdf-8 Propeptide Binds to GDF-8 and Antagonizes Biological Activity by Inhibiting GDF-8 Receptor Binding
journal, January 2001


Conformation and Self-association of Human Recombinant Transforming Growth Factor-β3 in Aqueous Solutions
journal, March 1999

  • Pellaud, Jérôme; Schote, Uwe; Arvinte, Tudor
  • Journal of Biological Chemistry, Vol. 274, Issue 12
  • DOI: 10.1074/jbc.274.12.7699

Assembly of TβRI:TβRII:TGFβ Ternary Complex in vitro with Receptor Extracellular Domains is Cooperative and Isoform-dependent
journal, December 2005

  • Zúñiga, Jorge E.; Groppe, Jay C.; Cui, Yumin
  • Journal of Molecular Biology, Vol. 354, Issue 5
  • DOI: 10.1016/j.jmb.2005.10.014

Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases
journal, June 2002

  • Muraoka, Rebecca S.; Dumont, Nancy; Ritter, Christoph A.
  • Journal of Clinical Investigation, Vol. 109, Issue 12
  • DOI: 10.1172/JCI200215234

Pharmacokinetics and Half-Life of Protein Therapeutics
book, January 2012


Selective inhibitors of type I receptor kinase block cellular transforming growth factor-β signaling
journal, July 2004

  • Ge, Rongrong; Rajeev, Vaishali; Subramanian, Gayathri
  • Biochemical Pharmacology, Vol. 68, Issue 1
  • DOI: 10.1016/j.bcp.2004.03.011

TGF-β signaling in fibrosis
journal, July 2011


XDS
journal, January 2010

  • Kabsch, Wolfgang
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2
  • DOI: 10.1107/S0907444909047337

Three-dimensional triple-resonance NMR Spectroscopy of isotopically enriched proteins
journal, December 2011

  • Kay, Lewis E.; Ikura, Mitsuhiko; Tschudin, Rolf
  • Journal of Magnetic Resonance, Vol. 213, Issue 2
  • DOI: 10.1016/j.jmr.2011.09.004

Inhibition of Pulmonary and Skeletal Metastasis by a Transforming Growth Factor-β Type I Receptor Kinase Inhibitor
journal, July 2006


Three Key Residues Underlie the Differential Affinity of the TGFβ Isoforms for the TGFβ Type II Receptor
journal, January 2006

  • De Crescenzo, Gregory; Hinck, Cynthia S.; Shu, Zhanyong
  • Journal of Molecular Biology, Vol. 355, Issue 1
  • DOI: 10.1016/j.jmb.2005.10.022

The crystal structure of TGF-β3 and comparison to TGF-β2: Implications for receptor binding
journal, July 1996

  • Mittl, Peer R. E.; Priestle, John P.; Cox, David A.
  • Protein Science, Vol. 5, Issue 7
  • DOI: 10.1002/pro.5560050705

Mechanism of activation of the TGF-β receptor
journal, August 1994

  • Wrana, Jeffrey L.; Attisano, Liliana; Wieser, Rotraud
  • Nature, Vol. 370, Issue 6488
  • DOI: 10.1038/370341a0

Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene
journal, July 1991

  • Dietz, Harry C.; Cutting, Carry R.; Pyeritz, Reed E.
  • Nature, Vol. 352, Issue 6333
  • DOI: 10.1038/352337a0

Tumor suppressor activity of the TGF-β pathway in human cancers
journal, June 1996


Characterization of Reversible Associations by Sedimentation Velocity with UltraScan
journal, June 2010

  • Demeler, Borries; Brookes, Emre; Wang, Renjing
  • Macromolecular Bioscience, Vol. 10, Issue 7
  • DOI: 10.1002/mabi.200900481

Unchaining the beast; insights from structural and evolutionary studies on TGFβ secretion, sequestration, and activation
journal, August 2013


Cooperative Assembly of TGF-β Superfamily Signaling Complexes Is Mediated by Two Disparate Mechanisms and Distinct Modes of Receptor Binding
journal, February 2008


Gene transfer of soluble transforming growth factor type II receptor by in vivo electroporation attenuates lung injury and fibrosis
journal, October 2006


iMOSFLM : a new graphical interface for diffraction-image processing with MOSFLM
journal, March 2011

  • Battye, T. Geoff G.; Kontogiannis, Luke; Johnson, Owen
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444910048675

NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy
journal, December 2014


Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases
journal, June 2002

  • Muraoka, Rebecca S.; Dumont, Nancy; Ritter, Christoph A.
  • Journal of Clinical Investigation, Vol. 109, Issue 12
  • DOI: 10.1172/jci0215234

Targeting the Transforming Growth Factor-β pathway inhibits human basal-like breast cancer metastasis
journal, January 2010


Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

Transforming growth factor   signalling and matrix metalloproteinases in the mucosa overlying Crohn's disease strictures
journal, February 2009


The 1.1 Å Crystal Structure of Human TGF-β Type II Receptor Ligand Binding Domain
journal, July 2002


PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

Outgrowth of Drug-Resistant Carcinomas Expressing Markers of Tumor Aggression after Long-term T RI/II Kinase Inhibition with LY2109761
journal, January 2011


Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects
journal, June 2002

  • Yang, Yu-an; Dukhanina, Oksana; Tang, Binwu
  • Journal of Clinical Investigation, Vol. 109, Issue 12
  • DOI: 10.1172/JCI200215333

Monte Carlo analysis of sedimentation experiments
journal, June 2007


Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins
journal, October 1990


Tgf-β Signal Transduction
journal, June 1998


HNCACB, a High-Sensitivity 3D NMR Experiment to Correlate Amide-Proton and Nitrogen Resonances with the Alpha- and Beta-Carbon Resonances in Proteins
journal, April 1993

  • Wittekind, M.; Mueller, L.
  • Journal of Magnetic Resonance, Series B, Vol. 101, Issue 2
  • DOI: 10.1006/jmrb.1993.1033

NMRPipe: A multidimensional spectral processing system based on UNIX pipes
journal, November 1995

  • Delaglio, Frank; Grzesiek, Stephan; Vuister, GeertenW.
  • Journal of Biomolecular NMR, Vol. 6, Issue 3
  • DOI: 10.1007/BF00197809

Development of TGF-β signalling inhibitors for cancer therapy
journal, December 2004

  • Yingling, Jonathan M.; Blanchard, Kerry L.; Sawyer, J. Scott
  • Nature Reviews Drug Discovery, Vol. 3, Issue 12
  • DOI: 10.1038/nrd1580

Antagonistic VEGF variants engineered to simultaneously bind to and inhibit VEGFR2 and  v 3 integrin
journal, August 2011

  • Papo, N.; Silverman, A. P.; Lahti, J. L.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 34
  • DOI: 10.1073/pnas.1016635108

TGFβ signals through a heteromeric protein kinase receptor complex
journal, December 1992


Methods for the Design and Analysis of Sedimentation Velocity and Sedimentation Equilibrium Experiments with Proteins
journal, April 2010


Antibody Targeting of TGF-β in Cancer Patients
journal, December 2011

  • Lonning, Scott; Mannick, Joan; M. McPherson, John
  • Current Pharmaceutical Biotechnology, Vol. 12, Issue 12
  • DOI: 10.2174/138920111798808392

Structural Biology and Evolution of the TGF-β Family
journal, September 2016

  • Hinck, Andrew P.; Mueller, Thomas D.; Springer, Timothy A.
  • Cold Spring Harbor Perspectives in Biology, Vol. 8, Issue 12
  • DOI: 10.1101/cshperspect.a022103

Complexities of TGF-β Targeted Cancer Therapy
journal, January 2012

  • Connolly, Erin C.; Freimuth, Julia; Akhurst, Rosemary J.
  • International Journal of Biological Sciences, Vol. 8, Issue 7
  • DOI: 10.7150/ijbs.4564

Exploring anti-TGF-β therapies in cancer and fibrosis
journal, June 2011


TGFβ in Cancer
journal, July 2008


Overexpression of human transforming growth factor-β1 using a recombinant CHO cell expression system
journal, October 2004


Phaser crystallographic software
journal, July 2007

  • McCoy, Airlie J.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
  • Journal of Applied Crystallography, Vol. 40, Issue 4
  • DOI: 10.1107/S0021889807021206

TβR-II Discriminates the High- and Low-Affinity TGF-β Isoforms via Two Hydrogen-Bonded Ion Pairs
journal, March 2009

  • Baardsnes, Jason; Hinck, Cynthia S.; Hinck, Andrew P.
  • Biochemistry, Vol. 48, Issue 10
  • DOI: 10.1021/bi8019004

[Ser77]transforming growth factor-beta 1. Selective biological activity and receptor binding in mink lung epithelial cells.
journal, November 1994


[20] Processing of X-ray diffraction data collected in oscillation mode
book, January 1997


Aurora-A kinase oncogenic signaling mediates TGF-β-induced triple-negative breast cancer plasticity and chemoresistance
journal, March 2021


PARP1 exhibits enhanced association and catalytic efficiency with γH2A.X-nucleosome
journal, December 2019


Cavin1 intrinsically disordered domains are essential for fuzzy electrostatic interactions and caveola formation
journal, February 2021


Multi-functionality of a tryptophan residue conserved in substrate-binding groove of GH19 chitinases
journal, January 2021


Overview of the CCP4 suite and current developments.
text, January 2011

  • Winn, Martyn D.; Ballard, Charles C.; Cowtan, Kevin D.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.52322

Biophysical and Biochemical Analysis of Recombinant Proteins
book, October 2007


PHENIX: a comprehensive Python-based system for macromolecular structure solution.
text, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.45787

Works referencing / citing this record:

Effects of Microcystin-LR on the Microstructure and Inflammation-Related Factors of Jejunum in Mice
journal, August 2019


TGF-β2 uses the concave surface of its extended finger region to bind betaglycan's ZP domain via three residues specific to TGF-β and inhibin-α
journal, December 2018

  • Henen, Morkos A.; Mahlawat, Pardeep; Zwieb, Christian
  • Journal of Biological Chemistry, Vol. 294, Issue 9
  • DOI: 10.1074/jbc.ra118.005210

Recombinant production, purification, crystallization, and structure analysis of human transforming growth factor β2 in a new conformation
journal, June 2019

  • del Amo-Maestro, Laura; Marino-Puertas, Laura; Goulas, Theodoros
  • Scientific Reports, Vol. 9, Issue 1
  • DOI: 10.1038/s41598-019-44943-4

Solving a new R2lox protein structure by microcrystal electron diffraction
journal, August 2019

  • Xu, Hongyi; Lebrette, Hugo; Clabbers, Max T. B.
  • Science Advances, Vol. 5, Issue 8
  • DOI: 10.1126/sciadv.aax4621