DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Growth and decay of runaway electrons above the critical electric field under quiescent conditions

Abstract

Extremely low density operation free of error eld penetration supports the excitation of trace-level quiescent runaway electron (RE) populations during the at-top of DIII-D Ohmic discharges. Operation in the quiescent regime allows accurate measurement of all key parameters important to RE excitation, including the internal broadband magnetic fluctuation level. RE onset is characterized and found to be consistent with primary (Dreicer) generation rates. Impurity-free collisional suppression of the RE population is investigated by stepping the late-time main-ion density until RE decay is observed. The transition from growth to decay is found to occur 3-5 times above the theoretical critical electric eld for avalanche growth and is thus indicative of anomalous RE loss. Lastly, this suggests that suppression of tokamak RE avalanches can be achieved at lower density than previously expected, though extrapolation requires predictive understanding of the RE loss mechanism and magnitude.

Authors:
 [1];  [2];  [3];  [4];  [4];  [2];  [5];  [6];  [5];  [7];  [8]
  1. Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)
  2. General Atomics, San Diego, CA (United States)
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  4. Univ. of California San Diego, La Jolla, CA (United States)
  5. Univ. of California, Los Angeles, CA (United States)
  6. Univ. of Texas, Austin, TX (United States)
  7. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  8. Univ. of California, Irvine, CA (United States)
Publication Date:
Research Org.:
Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1354820
Grant/Contract Number:  
FC02-04ER54698
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 21; Journal Issue: 2; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Paz-Soldan, Carlos, Eidietis, Nicholas W., Granetz, Robert S., Hollmann, Eric M., Moyer, Richard A., Wesley, John C., Zhang, Jie, Austin, Max E., Crocker, Neal A., Wingen, Andreas, and Zhu, Yubao. Growth and decay of runaway electrons above the critical electric field under quiescent conditions. United States: N. p., 2014. Web. doi:10.1063/1.4866912.
Paz-Soldan, Carlos, Eidietis, Nicholas W., Granetz, Robert S., Hollmann, Eric M., Moyer, Richard A., Wesley, John C., Zhang, Jie, Austin, Max E., Crocker, Neal A., Wingen, Andreas, & Zhu, Yubao. Growth and decay of runaway electrons above the critical electric field under quiescent conditions. United States. https://doi.org/10.1063/1.4866912
Paz-Soldan, Carlos, Eidietis, Nicholas W., Granetz, Robert S., Hollmann, Eric M., Moyer, Richard A., Wesley, John C., Zhang, Jie, Austin, Max E., Crocker, Neal A., Wingen, Andreas, and Zhu, Yubao. Thu . "Growth and decay of runaway electrons above the critical electric field under quiescent conditions". United States. https://doi.org/10.1063/1.4866912. https://www.osti.gov/servlets/purl/1354820.
@article{osti_1354820,
title = {Growth and decay of runaway electrons above the critical electric field under quiescent conditions},
author = {Paz-Soldan, Carlos and Eidietis, Nicholas W. and Granetz, Robert S. and Hollmann, Eric M. and Moyer, Richard A. and Wesley, John C. and Zhang, Jie and Austin, Max E. and Crocker, Neal A. and Wingen, Andreas and Zhu, Yubao},
abstractNote = {Extremely low density operation free of error eld penetration supports the excitation of trace-level quiescent runaway electron (RE) populations during the at-top of DIII-D Ohmic discharges. Operation in the quiescent regime allows accurate measurement of all key parameters important to RE excitation, including the internal broadband magnetic fluctuation level. RE onset is characterized and found to be consistent with primary (Dreicer) generation rates. Impurity-free collisional suppression of the RE population is investigated by stepping the late-time main-ion density until RE decay is observed. The transition from growth to decay is found to occur 3-5 times above the theoretical critical electric eld for avalanche growth and is thus indicative of anomalous RE loss. Lastly, this suggests that suppression of tokamak RE avalanches can be achieved at lower density than previously expected, though extrapolation requires predictive understanding of the RE loss mechanism and magnitude.},
doi = {10.1063/1.4866912},
journal = {Physics of Plasmas},
number = 2,
volume = 21,
place = {United States},
year = {Thu Feb 27 00:00:00 EST 2014},
month = {Thu Feb 27 00:00:00 EST 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 59 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electron and Ion Runaway in a Fully Ionized Gas. I
journal, July 1959


Runaway acceleration during magnetic reconnection in tokamaks
journal, November 2002


Chapter 3: MHD stability, operational limits and disruptions
journal, June 2007


Runaway electron production in DIII-D killer pellet experiments, calculated with the CQL3D/KPRAD model
journal, November 2000

  • Harvey, R. W.; Chan, V. S.; Chiu, S. C.
  • Physics of Plasmas, Vol. 7, Issue 11
  • DOI: 10.1063/1.1312816

Electron kinetics in a cooling plasma
journal, December 2004

  • Helander, P.; Smith, H.; Fülöp, T.
  • Physics of Plasmas, Vol. 11, Issue 12
  • DOI: 10.1063/1.1812759

Magnetic Reconnection in Astrophysical and Laboratory Plasmas
journal, September 2009


Relativistic limitations on runaway electrons
journal, June 1975


Stability of a runaway electron beam
journal, June 1986


Collisional avalanche exponentiation of runaway electrons in electrified plasmas
journal, January 1993


Theory for avalanche of runaway electrons in tokamaks
journal, October 1997


Fokker-Planck simulations mylb of knock-on electron runaway avalanche and bursts in tokamaks
journal, November 1998


Generation and loss of runaway electrons following disruptions in JET
journal, November 1993


Control of post-disruption runaway electron beams in DIII-D
journal, May 2012

  • Eidietis, N. W.; Commaux, N.; Hollmann, E. M.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.3695000

Effect of applied toroidal electric field on the growth/decay of plateau-phase runaway electron currents in DIII-D
journal, September 2011


Control and dissipation of runaway electron beams created during rapid shutdown experiments in DIII-D
journal, July 2013


The runaway electron discharge regime in the Tokamak-6 device
journal, August 1973


Runaway electrons in toroidal discharges
journal, June 1979


Investigation of ring-like runaway electron beams in the EAST tokamak
journal, April 2013


The kinetic theory of runaway electron beam instability in a tokamak
journal, March 1978


Destabilization of magnetosonic-whistler waves by a relativistic runaway beam
journal, June 2006

  • Fülöp, T.; Pokol, G.; Helander, P.
  • Physics of Plasmas, Vol. 13, Issue 6
  • DOI: 10.1063/1.2208327

Interaction of tearing modes with external structures in cylindrical geometry (plasma)
journal, July 1993


Nonlinear error-field penetration in low density ohmically heated tokamak plasmas
journal, August 2012


The limits and challenges of error field correction for ITER
journal, May 2012

  • Buttery, R. J.; Boozer, A. H.; Liu, Y. Q.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.3694655

Multi-mode error field correction on the DIII-D tokamak
journal, March 2003


Long-Pulse Suprathermal Discharges in the ASDEX Tokamak
journal, October 1981


Experimental investigation of runaway electron generation in TEXTOR
journal, December 1993


Islands of Runaway Electrons in the TEXTOR Tokamak and Relation to Transport in a Stochastic Field
journal, June 1994


Control of runaway electron secondary generation by changing Z eff
journal, February 1998


Losses of runaway electrons during ergodization
journal, March 2006


Runaway losses in ergodized plasmas
journal, January 2007


Sawtooth Instability in Tokamak Plasmas
journal, January 1997


Experimental Observation of a Magnetic-Turbulence Threshold for Runaway-Electron Generation in the TEXTOR Tokamak
journal, June 2013


Rotation Reversal Bifurcation and Energy Confinement Saturation in Tokamak Ohmic L -Mode Plasmas
journal, December 2011


Behaviour of disruption generated runaways in JET
journal, August 2002


Visible imaging and spectroscopy of disruption runaway electrons in DIII-D
journal, April 2013

  • Yu, J. H.; Hollmann, E. M.; Commaux, N.
  • Physics of Plasmas, Vol. 20, Issue 4
  • DOI: 10.1063/1.4801738

Role of Bremsstrahlung Radiation in Limiting the Energy of Runaway Electrons in Tokamaks
journal, June 2005


Numerical calculation of the runaway electron distribution function and associated synchrotron emission
journal, March 2014

  • Landreman, Matt; Stahl, Adam; Fülöp, Tünde
  • Computer Physics Communications, Vol. 185, Issue 3
  • DOI: 10.1016/j.cpc.2013.12.004

Influence of stochastic magnetic fields on relativistic electrons
journal, October 2006


Influence of B t on the magnetic turbulence and on the runaway transport in low-density discharges
journal, February 2012


Temporal and spectral evolution of runaway electron bursts in TEXTOR disruptions
journal, September 2012

  • Forster, M.; Finken, K. H.; Kudyakov, T.
  • Physics of Plasmas, Vol. 19, Issue 9
  • DOI: 10.1063/1.4755787

Neutron fluctuation measurements on TFTR
journal, August 1986

  • Heidbrink, W. W.
  • Review of Scientific Instruments, Vol. 57, Issue 8
  • DOI: 10.1063/1.1139176

Spatially distributed scintillator arrays for diagnosing runaway electron transport and energy behavior in tokamaks
journal, October 2010

  • James, A. N.; Hollmann, E. M.; Tynan, G. R.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3475710

Vertical‐viewing electron cyclotron emission diagnostic for the DIII‐D tokamak
journal, August 1988

  • James, Reed; Janz, S.; Ellis, R.
  • Review of Scientific Instruments, Vol. 59, Issue 8
  • DOI: 10.1063/1.1140162

Determination of the suprathermal electron distribution function during lower hybrid current drive in JET
journal, January 1994


Measurements of edge-localized-mode induced electron cyclotron emission bursts in DIII-D
journal, May 2001

  • Fuchs, Ch.; Austin, M. E.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1362527

Analytic model for the runaway distribution function in the presence of spatial diffusion
journal, March 1994

  • Catto, Peter J.; Myra, J. R.; Wootton, A. J.
  • Physics of Plasmas, Vol. 1, Issue 3
  • DOI: 10.1063/1.870814

Suppression of runaway electron avalanches by radial diffusion
journal, January 2000

  • Helander, P.; Eriksson, L. -G.; Andersson, F.
  • Physics of Plasmas, Vol. 7, Issue 10
  • DOI: 10.1063/1.1289892

Asymptotical Theory of Runaway Electron Diffusion Due to Magnetic Turbulence in Tokamak Plasmas
journal, November 2010

  • Abdullaev, S. S.; Finken, K. H.; Kudyakov, T.
  • Contributions to Plasma Physics, Vol. 50, Issue 10
  • DOI: 10.1002/ctpp.200900045

New mechanism of runaway electron diffusion due to microturbulence in tokamaks
journal, July 2012

  • Abdullaev, S. S.; Finken, K. H.; Forster, M.
  • Physics of Plasmas, Vol. 19, Issue 7
  • DOI: 10.1063/1.4736718

Design of a millimeter-wave polarimeter for NSTX-Upgrade and initial test on DIII-D
journal, October 2012

  • Zhang, J.; Peebles, W. A.; Carter, T. A.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4733735

A sensitivity assessment of millimeter-wave polarimetry for measurement of magnetic fluctuations associated with microtearing modes in NSTX-U
journal, March 2013


Electron Heat Transport in a Tokamak with Destroyed Magnetic Surfaces
journal, January 1978


Quasilinear diffusion in stochastic magnetic fields: Reconciliation of drift‐orbit modification calculations
journal, April 1993

  • Myra, J. R.; Catto, Peter J.; Mynick, H. E.
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 4
  • DOI: 10.1063/1.860906

Runaway electron drift orbits in magnetostatic perturbed fields
journal, March 2011


Analysis of shot-to-shot variability in post-disruption runaway electron currents for diverted DIII-D discharges
journal, July 2012


Works referencing / citing this record:

Numerical simulation of runaway electrons: 3-D effects on synchrotron radiation and impurity-based runaway current dissipation
journal, May 2018

  • del-Castillo-Negrete, D.; Carbajal, L.; Spong, D.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5018747

Resolving runaway electron distributions in space, time, and energy
journal, May 2018

  • Paz-Soldan, C.; Cooper, C. M.; Aleynikov, P.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5024223

Runaway electron imaging spectrometry (REIS) system
journal, July 2019

  • Causa, F.; Gospodarczyk, M.; Buratti, P.
  • Review of Scientific Instruments, Vol. 90, Issue 7
  • DOI: 10.1063/1.5061833

Phase-space dynamics of runaway electrons in magnetic fields
journal, February 2017

  • Guo, Zehua; McDevitt, Christopher J.; Tang, Xian-Zhu
  • Plasma Physics and Controlled Fusion, Vol. 59, Issue 4
  • DOI: 10.1088/1361-6587/aa5952

Study of runaway electrons in TUMAN-3M tokamak plasmas
journal, May 2018

  • Shevelev, A.; Khilkevitch, E.; Tukachinsky, A.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 7
  • DOI: 10.1088/1361-6587/aac0d5

Effect of partially ionized impurities and radiation on the effective critical electric field for runaway generation
journal, June 2018

  • Hesslow, L.; Embréus, O.; Wilkie, G. J.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 7
  • DOI: 10.1088/1361-6587/aac33e

Runaway electron experiments at COMPASS in support of the EUROfusion ITER physics research
journal, November 2018

  • Mlynar, J.; Ficker, O.; Macusova, E.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 1
  • DOI: 10.1088/1361-6587/aae04a

Low-frequency whistler waves in quiescent runaway electron plasmas
journal, November 2018

  • Heidbrink, W. W.; Paz-Soldan, C.; Spong, D. A.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 1
  • DOI: 10.1088/1361-6587/aae2da

Spatiotemporal evolution of runaway electrons from synchrotron images in Alcator C-Mod
journal, October 2018

  • Tinguely, R. A.; Granetz, R. S.; Hoppe, M.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 12
  • DOI: 10.1088/1361-6587/aae6ba

The role of kinetic instabilities in formation of the runaway electron current after argon injection in DIII-D
journal, November 2018

  • Lvovskiy, A.; Paz-Soldan, C.; Eidietis, N. W.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 12
  • DOI: 10.1088/1361-6587/aae95a

Transverse force induced by a magnetized wake
journal, October 2019

  • Lafleur, Trevor; Baalrud, Scott D.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 12
  • DOI: 10.1088/1361-6587/ab45d4

The effect of lower hybrid waves on JET plasma rotation
journal, December 2016


Interpretation of runaway electron synchrotron and bremsstrahlung images
journal, June 2018


Physics of runaway electrons in tokamaks
journal, June 2019

  • Breizman, Boris N.; Aleynikov, Pavel; Hollmann, Eric M.
  • Nuclear Fusion, Vol. 59, Issue 8
  • DOI: 10.1088/1741-4326/ab1822

Experimental and synthetic measurements of polarized synchrotron emission from runaway electrons in Alcator C-Mod
journal, July 2019


Interpretation of runaway electron synchrotron and bremsstrahlung images
text, January 2017


Spatiotemporal evolution of runaway electrons from synchrotron images in Alcator C-Mod
text, January 2018