skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantification of biogenic volatile organic compounds with a flame ionization detector using the effective carbon number concept

Abstract

Biogenic volatile organic compounds (BVOCs) are emitted into the atmosphere by plants and include isoprene, monoterpenes, sesquiterpenes, and their oxygenated derivatives. These BVOCs are among the principal factors influencing the oxidative capacity of the atmosphere in forested regions. BVOC emission rates are often measured by collecting samples onto adsorptive cartridges in the field and then transporting these samples to the laboratory for chromatographic analysis. One of the most commonly used detectors in chromatographic analysis is the flame ionization detector (FID). For quantitative analysis with an FID, relative response factors may be estimated using the effective carbon number (ECN) concept. The purpose of this study was to determine the ECN for a variety of terpenoid compounds to enable improved quantification of BVOC measurements. A dynamic dilution system was developed to make quantitative gas standards of VOCs with mixing ratios from 20–55 ppb. For each experiment using this system, one terpene standard was co-injected with an internal reference, n-octane, and analyzed via an automated cryofocusing system interfaced to a gas chromatograph flame ionization detector and mass spectrometer (GC/MS/FID). The ECNs of 16 compounds (14 BVOCs) were evaluated with this approach, with each test compound analyzed at least three times. The difference betweenmore » the actual carbon number and measured ECN ranged from -24% to -2%. Furthermore, the difference between theoretical ECN and measured ECN ranged from -22% to 9%. Measured ECN values were within 10% of theoretical ECN values for most terpenoid compounds.« less

Authors:
 [1];  [1];  [1];  [1]; ORCiD logo [1]
  1. Washington State Univ., Pullman, WA (United States)
Publication Date:
Research Org.:
Washington State Univ., Pullman, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1353453
Grant/Contract Number:  
SC0003899
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Measurement Techniques (Online)
Additional Journal Information:
Journal Name: Atmospheric Measurement Techniques (Online); Journal Volume: 5; Journal Issue: 8; Journal ID: ISSN 1867-8548
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 47 OTHER INSTRUMENTATION

Citation Formats

Faiola, C. L., Erickson, M. H., Fricaud, V. L., Jobson, B. T., and VanReken, T. M. Quantification of biogenic volatile organic compounds with a flame ionization detector using the effective carbon number concept. United States: N. p., 2012. Web. doi:10.5194/amt-5-1911-2012.
Faiola, C. L., Erickson, M. H., Fricaud, V. L., Jobson, B. T., & VanReken, T. M. Quantification of biogenic volatile organic compounds with a flame ionization detector using the effective carbon number concept. United States. doi:10.5194/amt-5-1911-2012.
Faiola, C. L., Erickson, M. H., Fricaud, V. L., Jobson, B. T., and VanReken, T. M. Fri . "Quantification of biogenic volatile organic compounds with a flame ionization detector using the effective carbon number concept". United States. doi:10.5194/amt-5-1911-2012. https://www.osti.gov/servlets/purl/1353453.
@article{osti_1353453,
title = {Quantification of biogenic volatile organic compounds with a flame ionization detector using the effective carbon number concept},
author = {Faiola, C. L. and Erickson, M. H. and Fricaud, V. L. and Jobson, B. T. and VanReken, T. M.},
abstractNote = {Biogenic volatile organic compounds (BVOCs) are emitted into the atmosphere by plants and include isoprene, monoterpenes, sesquiterpenes, and their oxygenated derivatives. These BVOCs are among the principal factors influencing the oxidative capacity of the atmosphere in forested regions. BVOC emission rates are often measured by collecting samples onto adsorptive cartridges in the field and then transporting these samples to the laboratory for chromatographic analysis. One of the most commonly used detectors in chromatographic analysis is the flame ionization detector (FID). For quantitative analysis with an FID, relative response factors may be estimated using the effective carbon number (ECN) concept. The purpose of this study was to determine the ECN for a variety of terpenoid compounds to enable improved quantification of BVOC measurements. A dynamic dilution system was developed to make quantitative gas standards of VOCs with mixing ratios from 20–55 ppb. For each experiment using this system, one terpene standard was co-injected with an internal reference, n-octane, and analyzed via an automated cryofocusing system interfaced to a gas chromatograph flame ionization detector and mass spectrometer (GC/MS/FID). The ECNs of 16 compounds (14 BVOCs) were evaluated with this approach, with each test compound analyzed at least three times. The difference between the actual carbon number and measured ECN ranged from -24% to -2%. Furthermore, the difference between theoretical ECN and measured ECN ranged from -22% to 9%. Measured ECN values were within 10% of theoretical ECN values for most terpenoid compounds.},
doi = {10.5194/amt-5-1911-2012},
journal = {Atmospheric Measurement Techniques (Online)},
number = 8,
volume = 5,
place = {United States},
year = {2012},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share: