DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes

Abstract

Lithium metal based batteries represent a major challenge and opportunity in enabling a variety of devices requiring high-energy-density storage. However, dendritic lithium growth has limited the practical application of lithium metal anodes. Here we report a nanoporous, flexible and electrochemically stable coating of silica@poly(methyl methacrylate) (SiO2@PMMA) core–shell nanospheres as an interfacial layer on lithium metal anode. This interfacial layer is capable of inhibiting Li dendrite growth while sustaining ionic flux through it, which is attributed to the nanoscaled pores formed among the nanospheres. Lastly, enhanced Coulombic efficiencies during lithium charge/discharge cycles have been achieved at various current densities and areal capacities.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [2]
  1. Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
  2. Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States, Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1342975
Alternate Identifier(s):
OSTI ID: 1353112
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Published Article
Journal Name:
ACS Central Science
Additional Journal Information:
Journal Name: ACS Central Science Journal Volume: 3 Journal Issue: 2; Journal ID: ISSN 2374-7943
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE

Citation Formats

Liu, Wei, Li, Weiyang, Zhuo, Denys, Zheng, Guangyuan, Lu, Zhenda, Liu, Kai, and Cui, Yi. Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes. United States: N. p., 2017. Web. doi:10.1021/acscentsci.6b00389.
Liu, Wei, Li, Weiyang, Zhuo, Denys, Zheng, Guangyuan, Lu, Zhenda, Liu, Kai, & Cui, Yi. Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes. United States. https://doi.org/10.1021/acscentsci.6b00389
Liu, Wei, Li, Weiyang, Zhuo, Denys, Zheng, Guangyuan, Lu, Zhenda, Liu, Kai, and Cui, Yi. Wed . "Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes". United States. https://doi.org/10.1021/acscentsci.6b00389.
@article{osti_1342975,
title = {Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes},
author = {Liu, Wei and Li, Weiyang and Zhuo, Denys and Zheng, Guangyuan and Lu, Zhenda and Liu, Kai and Cui, Yi},
abstractNote = {Lithium metal based batteries represent a major challenge and opportunity in enabling a variety of devices requiring high-energy-density storage. However, dendritic lithium growth has limited the practical application of lithium metal anodes. Here we report a nanoporous, flexible and electrochemically stable coating of silica@poly(methyl methacrylate) (SiO2@PMMA) core–shell nanospheres as an interfacial layer on lithium metal anode. This interfacial layer is capable of inhibiting Li dendrite growth while sustaining ionic flux through it, which is attributed to the nanoscaled pores formed among the nanospheres. Lastly, enhanced Coulombic efficiencies during lithium charge/discharge cycles have been achieved at various current densities and areal capacities.},
doi = {10.1021/acscentsci.6b00389},
journal = {ACS Central Science},
number = 2,
volume = 3,
place = {United States},
year = {Wed Feb 08 00:00:00 EST 2017},
month = {Wed Feb 08 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acscentsci.6b00389

Citation Metrics:
Cited by: 142 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries
journal, May 2010

  • Bhattacharyya, Rangeet; Key, Baris; Chen, Hailong
  • Nature Materials, Vol. 9, Issue 6
  • DOI: 10.1038/nmat2764

Dendrite-separator interactions in lithium-based batteries
journal, February 2015


A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
journal, January 2014

  • Seino, Yoshikatsu; Ota, Tsuyoshi; Takada, Kazunori
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE41655K

The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries
journal, January 2012

  • Stone, G. M.; Mullin, S. A.; Teran, A. A.
  • Journal of The Electrochemical Society, Vol. 159, Issue 3
  • DOI: 10.1149/2.030203jes

Superparamagnetic Composite Colloids with Anisotropic Structures
journal, July 2007

  • Ge, Jianping; Hu, Yongxing; Zhang, Tierui
  • Journal of the American Chemical Society, Vol. 129, Issue 29
  • DOI: 10.1021/ja0736461

Separators - Technology review: Ceramic based separators for secondary batteries
conference, January 2014

  • Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram
  • REVIEW ON ELECTROCHEMICAL STORAGE MATERIALS AND TECHNOLOGY: Proceedings of the 1st International Freiberg Conference on Electrochemical Storage Materials, AIP Conference Proceedings
  • DOI: 10.1063/1.4878486

Effect of Electrolyte Composition on Lithium Dendrite Growth
journal, January 2008

  • Crowther, Owen; West, Alan C.
  • Journal of The Electrochemical Society, Vol. 155, Issue 11
  • DOI: 10.1149/1.2969424

Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode
journal, September 2014

  • Yan, Kai; Lee, Hyun-Wook; Gao, Teng
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl503125u

Controlled Lithium Dendrite Growth by a Synergistic Effect of Multilayered Graphene Coating and an Electrolyte Additive
journal, April 2015

  • Kim, Joo-Seong; Kim, Dae Woo; Jung, Hee Tae
  • Chemistry of Materials, Vol. 27, Issue 8
  • DOI: 10.1021/cm503447u

Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode
journal, March 2016

  • Liu, Yayuan; Lin, Dingchang; Liang, Zheng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10992

Preparation and Characterization of ZnS, CdS and HgS/Poly(methyl methacrylate) Nanocomposites
journal, September 2014


Dendrite-Free Electrodeposition and Reoxidation of Lithium-Sodium Alloy for Metal-Anode Battery
journal, January 2011

  • Stark, Johanna K.; Ding, Yi; Kohl, Paul A.
  • Journal of The Electrochemical Society, Vol. 158, Issue 10
  • DOI: 10.1149/1.3622348

Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating
journal, February 2016

  • Liang, Zheng; Lin, Dingchang; Zhao, Jie
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 11
  • DOI: 10.1073/pnas.1518188113

Carbon materials for lithium-ion rechargeable batteries
journal, February 1999


Effects of Triacetoxyvinylsilane as SEI Layer Additive on Electrochemical Performance of Lithium Metal Secondary Battery
journal, January 2007

  • Lee, Yong Min; Seo, Jeong Eun; Lee, Young-Gi
  • Electrochemical and Solid-State Letters, Vol. 10, Issue 9
  • DOI: 10.1149/1.2750439

A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

Nanostructured sulfur cathodes
journal, January 2013

  • Yang, Yuan; Zheng, Guangyuan; Cui, Yi
  • Chemical Society Reviews, Vol. 42, Issue 7, p. 3018-3032
  • DOI: 10.1039/c2cs35256g

Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries
journal, March 2013

  • Bouchet, Renaud; Maria, Sébastien; Meziane, Rachid
  • Nature Materials, Vol. 12, Issue 5
  • DOI: 10.1038/nmat3602

Cycling behaviour of Li/Li4Ti5O12 cells studied by electrochemical impedance spectroscopy
journal, January 2011

  • Schweikert, Nina; Hahn, Horst; Indris, Sylvio
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 13
  • DOI: 10.1039/c0cp01889a

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
journal, February 2016

  • Yan, Kai; Lu, Zhenda; Lee, Hyun-Wook
  • Nature Energy, Vol. 1, Issue 3, Article No. 16010
  • DOI: 10.1038/nenergy.2016.10

Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells
journal, January 2012

  • Zhamu, Aruna; Chen, Guorong; Liu, Chenguang
  • Energy Environ. Sci., Vol. 5, Issue 2
  • DOI: 10.1039/C2EE02911A

Preparation of monodisperse silica particles: Control of size and mass fraction
journal, August 1988

  • Bogush, G. H.; Tracy, M. A.; Zukoski, C. F.
  • Journal of Non-Crystalline Solids, Vol. 104, Issue 1, p. 95-106
  • DOI: 10.1016/0022-3093(88)90187-1

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Enhanced cyclability and surface characteristics of lithium batteries by Li–Mg co-deposition and addition of HF acid in electrolyte
journal, January 2008


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Recent developments and likely advances in lithium-ion batteries
journal, November 2006


Behavior of lithium/electrolyte interface in organic solutions
journal, March 1993


Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes
journal, November 2013

  • Harry, Katherine J.; Hallinan, Daniel T.; Parkinson, Dilworth Y.
  • Nature Materials, Vol. 13, Issue 1
  • DOI: 10.1038/nmat3793

Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Anomalous High Ionic Conductivity of Nanoporous β-Li3PS4
journal, January 2013

  • Liu, Zengcai; Fu, Wujun; Payzant, E. Andrew
  • Journal of the American Chemical Society, Vol. 135, Issue 3, p. 975-978
  • DOI: 10.1021/ja3110895

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

Lithium-ion batteries with high charge rate capacity: Influence of the porous separator
journal, October 2007