skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Validating precision estimates in horizontal wind measurements from a Doppler lidar

Abstract

Results from a recent field campaign are used to assess the accuracy of wind speed and direction precision estimates produced by a Doppler lidar wind retrieval algorithm. The algorithm, which is based on the traditional velocity-azimuth-display (VAD) technique, estimates the wind speed and direction measurement precision using standard error propagation techniques, assuming the input data (i.e., radial velocities) to be contaminated by random, zero-mean, errors. For this study, the lidar was configured to execute an 8-beam plan-position-indicator (PPI) scan once every 12 min during the 6-week deployment period. Several wind retrieval trials were conducted using different schemes for estimating the precision in the radial velocity measurements. Here, the resulting wind speed and direction precision estimates were compared to differences in wind speed and direction between the VAD algorithm and sonic anemometer measurements taken on a nearby 300 m tower.

Authors:
 [1];  [2];  [2];  [3];  [4]; ORCiD logo [5]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.
  3. National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.; Cooperative Institute for Research in Environmental Sciences, Boulder, CO (United States)
  4. National Center for Atmospheric Research, Boulder, CO (United States)
  5. Univ. of Colorado, Boulder, CO (United States); National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Wind and Water Technologies Office (EE-4W); USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1353004
Report Number(s):
NREL/JA-5000-68401
Journal ID: ISSN 1867-8548
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Measurement Techniques (Online)
Additional Journal Information:
Journal Name: Atmospheric Measurement Techniques (Online); Journal Volume: 10; Journal Issue: 3; Journal ID: ISSN 1867-8548
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
17 WIND ENERGY; 47 OTHER INSTRUMENTATION; doppler lidar; wind speed; direction measurement

Citation Formats

Newsom, Rob K., Brewer, W. Alan, Wilczak, James M., Wolfe, Daniel E., Oncley, Steven P., and Lundquist, Julie K. Validating precision estimates in horizontal wind measurements from a Doppler lidar. United States: N. p., 2017. Web. https://doi.org/10.5194/amt-10-1229-2017.
Newsom, Rob K., Brewer, W. Alan, Wilczak, James M., Wolfe, Daniel E., Oncley, Steven P., & Lundquist, Julie K. Validating precision estimates in horizontal wind measurements from a Doppler lidar. United States. https://doi.org/10.5194/amt-10-1229-2017
Newsom, Rob K., Brewer, W. Alan, Wilczak, James M., Wolfe, Daniel E., Oncley, Steven P., and Lundquist, Julie K. Thu . "Validating precision estimates in horizontal wind measurements from a Doppler lidar". United States. https://doi.org/10.5194/amt-10-1229-2017. https://www.osti.gov/servlets/purl/1353004.
@article{osti_1353004,
title = {Validating precision estimates in horizontal wind measurements from a Doppler lidar},
author = {Newsom, Rob K. and Brewer, W. Alan and Wilczak, James M. and Wolfe, Daniel E. and Oncley, Steven P. and Lundquist, Julie K.},
abstractNote = {Results from a recent field campaign are used to assess the accuracy of wind speed and direction precision estimates produced by a Doppler lidar wind retrieval algorithm. The algorithm, which is based on the traditional velocity-azimuth-display (VAD) technique, estimates the wind speed and direction measurement precision using standard error propagation techniques, assuming the input data (i.e., radial velocities) to be contaminated by random, zero-mean, errors. For this study, the lidar was configured to execute an 8-beam plan-position-indicator (PPI) scan once every 12 min during the 6-week deployment period. Several wind retrieval trials were conducted using different schemes for estimating the precision in the radial velocity measurements. Here, the resulting wind speed and direction precision estimates were compared to differences in wind speed and direction between the VAD algorithm and sonic anemometer measurements taken on a nearby 300 m tower.},
doi = {10.5194/amt-10-1229-2017},
journal = {Atmospheric Measurement Techniques (Online)},
number = 3,
volume = 10,
place = {United States},
year = {2017},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Doppler Lidar–Based Wind-Profile Measurement System for Offshore Wind-Energy and Other Marine Boundary Layer Applications
journal, February 2012

  • Pichugina, Yelena L.; Banta, Robert M.; Brewer, W. Alan
  • Journal of Applied Meteorology and Climatology, Vol. 51, Issue 2
  • DOI: 10.1175/JAMC-D-11-040.1

Impact of airborne Doppler wind lidar profiles on numerical simulations of a tropical cyclone: AIRBORNE DOPPLER WIND LIDAR DATA IMPACT
journal, March 2010

  • Pu, Zhaoxia; Zhang, Lei; Emmitt, G. David
  • Geophysical Research Letters, Vol. 37, Issue 5
  • DOI: 10.1029/2009GL041765

The Impact of Doppler Lidar Wind Observations on a Single-Level Meteorological Analysis
journal, May 2004

  • Riishøjgaard, L. P.; Atlas, R.; Emmitt, G. D.
  • Journal of Applied Meteorology, Vol. 43, Issue 5
  • DOI: 10.1175/2091.1

On the accuracy of retrieved wind information from Doppler lidar observations
journal, January 2003

  • Davies, F.; Collier, C. G.; Bozier, K. E.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 129, Issue 587
  • DOI: 10.1256/qj.01.126

Sonic Anemometer Tilt Correction Algorithms
journal, April 2001

  • Wilczak, James M.; Oncley, Steven P.; Stage, Steven A.
  • Boundary-Layer Meteorology, Vol. 99, Issue 1
  • DOI: 10.1023/A:1018966204465

Retrieval of Microscale Flow Structures from High-Resolution Doppler Lidar Data Using an Adjoint Model
journal, July 2004


Lidar profilers in the context of wind energy-a verification procedure for traceable measurements: Lidar profilers in the context of wind energy
journal, December 2011

  • Gottschall, J.; Courtney, M. S.; Wagner, R.
  • Wind Energy, Vol. 15, Issue 1
  • DOI: 10.1002/we.518

Wind Measurements from Arc Scans with Doppler Wind Lidar
journal, November 2015

  • Wang, H.; Barthelmie, R. J.; Clifton, A.
  • Journal of Atmospheric and Oceanic Technology, Vol. 32, Issue 11
  • DOI: 10.1175/JTECH-D-14-00059.1

Estimating Spatial Velocity Statistics with Coherent Doppler Lidar
journal, March 2002


Measuring Second- through Fourth-Order Moments in Noisy Data
journal, October 2000


Velocity Error for Coherent Doppler Lidar with Pulse Accumulation*
journal, June 2004

  • Frehlich, Rod
  • Journal of Atmospheric and Oceanic Technology, Vol. 21, Issue 6
  • DOI: 10.1175/JTECH1596

Side-scan Doppler lidar for offshore wind energy applications
journal, January 2012

  • Koch, Grady J.; Beyon, Jeffrey Y.; Modlin, Edward A.
  • Journal of Applied Remote Sensing, Vol. 6, Issue 1
  • DOI: 10.1117/1.JRS.6.063562

Offshore wind profiling using light detection and ranging measurements
journal, March 2009

  • Peña, Alfredo; Hasager, Charlotte Bay; Gryning, Sven-Erik
  • Wind Energy, Vol. 12, Issue 2
  • DOI: 10.1002/we.283

An assessment of a three-beam Doppler lidar wind profiling method for use in urban areas
journal, August 2013

  • Lane, S. E.; Barlow, J. F.; Wood, C. R.
  • Journal of Wind Engineering and Industrial Aerodynamics, Vol. 119
  • DOI: 10.1016/j.jweia.2013.05.010

The Arm Climate Research Facility: A Review of Structure and Capabilities
journal, March 2013

  • Mather, James H.; Voyles, Jimmy W.
  • Bulletin of the American Meteorological Society, Vol. 94, Issue 3
  • DOI: 10.1175/BAMS-D-11-00218.1

Assessing State-of-the-Art Capabilities for Probing the Atmospheric Boundary Layer: The XPIA Field Campaign
journal, February 2017

  • Lundquist, Julie K.; Wilczak, James M.; Ashton, Ryan
  • Bulletin of the American Meteorological Society, Vol. 98, Issue 2
  • DOI: 10.1175/bams-d-15-00151.1

The Boulder Atmospheric Observatory
journal, May 1983


Impact of airborne Doppler lidar observations on ECMWF forecasts
journal, January 2007

  • Weissmann, Martin; Cardinali, Carla
  • Quarterly Journal of the Royal Meteorological Society, Vol. 133, Issue 622
  • DOI: 10.1002/qj.16

Validation and Measurements of Floating LiDAR for Nearshore Wind Resource Assessment Application
journal, January 2014


Turbine-scale wind field measurements using dual-Doppler lidar: Turbine-scale wind field measurements using dual-Doppler lidar
journal, December 2013

  • Newsom, Rob K.; Berg, Larry K.; Shaw, William J.
  • Wind Energy, Vol. 18, Issue 2
  • DOI: 10.1002/we.1691

Assimilating Coherent Doppler Lidar Measurements into a Model of the Atmospheric Boundary Layer. Part II: Sensitivity Analyses
journal, December 2004

  • Newsom, Rob K.; Banta, Robert M.
  • Journal of Atmospheric and Oceanic Technology, Vol. 21, Issue 12
  • DOI: 10.1175/JTECH-1676.1

An Analysis of the Performance of the UFAM Pulsed Doppler Lidar for Observing the Boundary Layer
journal, February 2009

  • Pearson, Guy; Davies, Fay; Collier, Chris
  • Journal of Atmospheric and Oceanic Technology, Vol. 26, Issue 2
  • DOI: 10.1175/2008JTECHA1128.1

Retrieval of Microscale Wind and Temperature Fields from Single- and Dual-Doppler Lidar Data
journal, September 2005

  • Newsom, Rob K.; Ligon, David; Calhoun, Ron
  • Journal of Applied Meteorology, Vol. 44, Issue 9, p. 1324-1345
  • DOI: 10.1175/JAM2280.1

Identification of tower-wake distortions using sonic anemometer and lidar measurements
journal, January 2017

  • McCaffrey, Katherine; Quelet, Paul T.; Choukulkar, Aditya
  • Atmospheric Measurement Techniques, Vol. 10, Issue 2
  • DOI: 10.5194/amt-10-393-2017

Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics
journal, January 2015

  • Lundquist, J. K.; Churchfield, M. J.; Lee, S.
  • Atmospheric Measurement Techniques, Vol. 8, Issue 2
  • DOI: 10.5194/amt-8-907-2015

A new formulation for rotor equivalent wind speed for wind resource assessment and wind power forecasting: New formulation for equivalent wind speed
journal, September 2015

  • Choukulkar, Aditya; Pichugina, Yelena; Clack, Christopher T. M.
  • Wind Energy, Vol. 19, Issue 8
  • DOI: 10.1002/we.1929

LIDAR and SODAR Measurements of Wind Speed and Direction in Upland Terrain for Wind Energy Purposes
journal, August 2011

  • Lang, Steven; McKeogh, Eamon
  • Remote Sensing, Vol. 3, Issue 9
  • DOI: 10.3390/rs3091871

The Determination of Kinematic Properties of a Wind Field Using Doppler Radar
journal, February 1968


Assessing State-of-the-Art Capabilities for Probing the Atmospheric Boundary Layer: The XPIA Field Campaign
journal, February 2017

  • Lundquist, Julie K.; Wilczak, James M.; Ashton, Ryan
  • Bulletin of the American Meteorological Society, Vol. 98, Issue 2
  • DOI: 10.1175/BAMS-D-15-00151.1

    Works referencing / citing this record:

    A Multi-Year Evaluation of Doppler Lidar Wind-Profile Observations in the Arctic
    journal, January 2020

    • Mariani, Zen; Crawford, Robert; Casati, Barbara
    • Remote Sensing, Vol. 12, Issue 2
    • DOI: 10.3390/rs12020323

    Response of the Land‐Atmosphere System Over North‐Central Oklahoma During the 2017 Eclipse
    journal, February 2018

    • Turner, D. D.; Wulfmeyer, V.; Behrendt, A.
    • Geophysical Research Letters, Vol. 45, Issue 3
    • DOI: 10.1002/2017gl076908

    Atmospheric Boundary Layer Classification With Doppler Lidar
    journal, August 2018

    • Manninen, A. J.; Marke, T.; Tuononen, M.
    • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 15
    • DOI: 10.1029/2017jd028169

    A novel post-processing algorithm for Halo Doppler lidars
    journal, January 2019

    • Vakkari, Ville; Manninen, Antti J.; O'Connor, Ewan J.
    • Atmospheric Measurement Techniques, Vol. 12, Issue 2
    • DOI: 10.5194/amt-12-839-2019

    Internet of Things for Environmental Sustainability and Climate Change
    book, December 2019

    • Salam, Abdul
    • Internet of Things for Sustainable Community Development: Wireless Communications, Sensing, and Systems, p. 33-69
    • DOI: 10.1007/978-3-030-35291-2_2

    Contrasting Characteristics and Evolution of Southerly Low-Level Jets During Different Boundary-Layer Regimes
    journal, October 2019

    • Bonin, Timothy A.; Klein, Petra M.; Chilson, Phillip B.
    • Boundary-Layer Meteorology, Vol. 174, Issue 2
    • DOI: 10.1007/s10546-019-00481-0

    LiDAR measurements for an onshore wind farm: Wake variability for different incoming wind speeds and atmospheric stability regimes
    journal, December 2019

    • Zhan, Lu; Letizia, Stefano; Valerio Iungo, Giacomo
    • Wind Energy, Vol. 23, Issue 3
    • DOI: 10.1002/we.2430

    Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign
    journal, January 2018

    • Bodini, Nicola; Lundquist, Julie K.; Newsom, Rob K.
    • Atmospheric Measurement Techniques, Vol. 11, Issue 7
    • DOI: 10.5194/amt-11-4291-2018