DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Capturing anharmonicity in a lattice thermal conductivity model for high-throughput predictions

Abstract

High-throughput, low-cost, and accurate predictions of thermal properties of new materials would be beneficial in fields ranging from thermal barrier coatings and thermoelectrics to integrated circuits. To date, computational efforts for predicting lattice thermal conductivity (κL) have been hampered by the complexity associated with computing multiple phonon interactions. In this work, we develop and validate a semiempirical model for κL by fitting density functional theory calculations to experimental data. Experimental values for κL come from new measurements on SrIn2O4, Ba2SnO4, Cu2ZnSiTe4, MoTe2, Ba3In2O6, Cu3TaTe4, SnO, and InI as well as 55 compounds from across the published literature. Here, to capture the anharmonicity in phonon interactions, we incorporate a structural parameter that allows the model to predict κL within a factor of 1.5 of the experimental value across 4 orders of magnitude in κL values and over a diverse chemical and structural phase space, with accuracy similar to or better than that of computationally more expensive models.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [2];  [4];  [1];  [1];  [1];  [4];  [2];  [2]
  1. Northwestern Univ., Evanston, IL (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States); Colorado School of Mines, Golden, CO (United States)
  3. Colorado School of Mines, Golden, CO (United States)
  4. Univ. of Colorado, Boulder, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); NREL Laboratory Directed Research and Development (LDRD)
OSTI Identifier:
1352998
Report Number(s):
NREL/JA-5K00-68399
Journal ID: ISSN 0897-4756
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 29; Journal Issue: 6; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; thermal properties; lattice thermal conductivity

Citation Formats

Miller, Samuel A., Gorai, Prashun, Ortiz, Brenden R., Goyal, Anuj, Gao, Duanfeng, Barnett, Scott A., Mason, Thomas O., Snyder, G. Jeffrey, Lv, Qin, Stevanović, Vladan, and Toberer, Eric S. Capturing anharmonicity in a lattice thermal conductivity model for high-throughput predictions. United States: N. p., 2017. Web. doi:10.1021/acs.chemmater.6b04179.
Miller, Samuel A., Gorai, Prashun, Ortiz, Brenden R., Goyal, Anuj, Gao, Duanfeng, Barnett, Scott A., Mason, Thomas O., Snyder, G. Jeffrey, Lv, Qin, Stevanović, Vladan, & Toberer, Eric S. Capturing anharmonicity in a lattice thermal conductivity model for high-throughput predictions. United States. https://doi.org/10.1021/acs.chemmater.6b04179
Miller, Samuel A., Gorai, Prashun, Ortiz, Brenden R., Goyal, Anuj, Gao, Duanfeng, Barnett, Scott A., Mason, Thomas O., Snyder, G. Jeffrey, Lv, Qin, Stevanović, Vladan, and Toberer, Eric S. Fri . "Capturing anharmonicity in a lattice thermal conductivity model for high-throughput predictions". United States. https://doi.org/10.1021/acs.chemmater.6b04179. https://www.osti.gov/servlets/purl/1352998.
@article{osti_1352998,
title = {Capturing anharmonicity in a lattice thermal conductivity model for high-throughput predictions},
author = {Miller, Samuel A. and Gorai, Prashun and Ortiz, Brenden R. and Goyal, Anuj and Gao, Duanfeng and Barnett, Scott A. and Mason, Thomas O. and Snyder, G. Jeffrey and Lv, Qin and Stevanović, Vladan and Toberer, Eric S.},
abstractNote = {High-throughput, low-cost, and accurate predictions of thermal properties of new materials would be beneficial in fields ranging from thermal barrier coatings and thermoelectrics to integrated circuits. To date, computational efforts for predicting lattice thermal conductivity (κL) have been hampered by the complexity associated with computing multiple phonon interactions. In this work, we develop and validate a semiempirical model for κL by fitting density functional theory calculations to experimental data. Experimental values for κL come from new measurements on SrIn2O4, Ba2SnO4, Cu2ZnSiTe4, MoTe2, Ba3In2O6, Cu3TaTe4, SnO, and InI as well as 55 compounds from across the published literature. Here, to capture the anharmonicity in phonon interactions, we incorporate a structural parameter that allows the model to predict κL within a factor of 1.5 of the experimental value across 4 orders of magnitude in κL values and over a diverse chemical and structural phase space, with accuracy similar to or better than that of computationally more expensive models.},
doi = {10.1021/acs.chemmater.6b04179},
journal = {Chemistry of Materials},
number = 6,
volume = 29,
place = {United States},
year = {Fri Jan 06 00:00:00 EST 2017},
month = {Fri Jan 06 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 69 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects
journal, August 2013


Thermal Issues in Next-Generation Integrated Circuits
journal, December 2004

  • Gurrum, S. P.; Suman, S. K.; Joshi, Y. K.
  • IEEE Transactions on Device and Materials Reliability, Vol. 4, Issue 4
  • DOI: 10.1109/TDMR.2004.840160

Thermal management of LEDs: package to system
conference, January 2004

  • Arik, Mehmet; Becker, Charles A.; Weaver, Stanton E.
  • Optical Science and Technology, SPIE's 48th Annual Meeting, SPIE Proceedings
  • DOI: 10.1117/12.512731

Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
journal, September 2008


Complex thermoelectric materials
journal, February 2008

  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

The Zintl Compound Ca5Al2Sb6 for Low-Cost Thermoelectric Power Generation
journal, September 2010

  • Toberer, Eric S.; Zevalkink, Alexandra; Crisosto, Nicole
  • Advanced Functional Materials, Vol. 20, Issue 24
  • DOI: 10.1002/adfm.201000970

The Thermal Conductivity of Nonmetallic Crystals
book, January 1979


Thermal Conductivity of Complex Dielectric Crystals
journal, June 1973


New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design
journal, May 2002

  • Belsky, Alec; Hellenbrandt, Mariette; Karen, Vicky Lynn
  • Acta Crystallographica Section B Structural Science, Vol. 58, Issue 3
  • DOI: 10.1107/S0108768102006948

Computational predictions of energy materials using density functional theory
journal, January 2016


Thermal conductivity of diamond nanowires from first principles
journal, May 2012


Intrinsic lattice thermal conductivity of semiconductors from first principles
journal, December 2007

  • Broido, D. A.; Malorny, M.; Birner, G.
  • Applied Physics Letters, Vol. 91, Issue 23
  • DOI: 10.1063/1.2822891

Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization
journal, November 2015


Calculating the thermal conductivity of the silicon clathrates using the quasi-harmonic approximation: Quasi-harmonic thermal conductivity
journal, November 2015

  • Madsen, Georg K. H.; Katre, Ankita; Bera, Chandan
  • physica status solidi (a), Vol. 213, Issue 3
  • DOI: 10.1002/pssa.201532615

TE Design Lab: A virtual laboratory for thermoelectric material design
journal, February 2016


Computational identification of promising thermoelectric materials among known quasi-2D binary compounds
journal, January 2016

  • Gorai, Prashun; Toberer, Eric S.; Stevanović, Vladan
  • Journal of Materials Chemistry A, Vol. 4, Issue 28
  • DOI: 10.1039/C6TA04121C

Anharmonic properties: Ionic model of the effects of compression and coordination change
journal, December 1982

  • Jeanloz, Raymond; Roufosse, Micheline
  • Journal of Geophysical Research: Solid Earth, Vol. 87, Issue B13
  • DOI: 10.1029/JB087iB13p10763

Thinking Like a Chemist: Intuition in Thermoelectric Materials
journal, April 2016

  • Zeier, Wolfgang G.; Zevalkink, Alex; Gibbs, Zachary M.
  • Angewandte Chemie International Edition, Vol. 55, Issue 24
  • DOI: 10.1002/anie.201508381

Structural metrics of high-temperature lattice conductivity
journal, December 2006

  • Huang, B. L.; Kaviany, M.
  • Journal of Applied Physics, Vol. 100, Issue 12
  • DOI: 10.1063/1.2396794

The Scattering of Low-Frequency Lattice Waves by Static Imperfections
journal, December 1955


Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds
journal, August 2004

  • Yang, J.; Meisner, G. P.; Chen, L.
  • Applied Physics Letters, Vol. 85, Issue 7
  • DOI: 10.1063/1.1783022

Works referencing / citing this record:

A scattering rate model for accelerated evaluation of lattice thermal conductivity bypassing anharmonic force constants
journal, May 2019

  • Xie, Han; Yan, Jiahao; Gu, Xiaokun
  • Journal of Applied Physics, Vol. 125, Issue 20
  • DOI: 10.1063/1.5091504

Computationally guided discovery of thermoelectric materials
journal, August 2017


Machine Learning Approaches for Thermoelectric Materials Research
journal, November 2019

  • Wang, Tian; Zhang, Cheng; Snoussi, Hichem
  • Advanced Functional Materials, Vol. 30, Issue 5
  • DOI: 10.1002/adfm.201906041

Band Structures and Transport Properties of High-Performance Half-Heusler Thermoelectric Materials by First Principles
journal, May 2018

  • Fang, Teng; Zhao, Xinbing; Zhu, Tiejun
  • Materials, Vol. 11, Issue 5
  • DOI: 10.3390/ma11050847

Achieving zT > 2 in p-Type AgSbTe 2− x Se x Alloys via Exploring the Extra Light Valence Band and Introducing Dense Stacking Faults
journal, December 2017


Perspective on ab initio phonon thermal transport
journal, August 2019

  • Lindsay, Lucas; Katre, Ankita; Cepellotti, Andrea
  • Journal of Applied Physics, Vol. 126, Issue 5
  • DOI: 10.1063/1.5108651

Thermoelectric Properties of Scandium Sesquitelluride
journal, March 2019

  • Cheikh, Dean; Lee, Kathleen; Peng, Wanyue
  • Materials, Vol. 12, Issue 5
  • DOI: 10.3390/ma12050734

A strategy to apply machine learning to small datasets in materials science
journal, May 2018


Vibrational properties of CdGa 2 S 4 at high pressure
journal, March 2019

  • Gallego-Parra, S.; Gomis, O.; Vilaplana, R.
  • Journal of Applied Physics, Vol. 125, Issue 11
  • DOI: 10.1063/1.5080503

Empirical modeling of dopability in diamond-like semiconductors
journal, December 2018

  • Miller, Samuel A.; Dylla, Maxwell; Anand, Shashwat
  • npj Computational Materials, Vol. 4, Issue 1
  • DOI: 10.1038/s41524-018-0123-6

The 2019 materials by design roadmap
journal, October 2018

  • Alberi, Kirstin; Nardelli, Marco Buongiorno; Zakutayev, Andriy
  • Journal of Physics D: Applied Physics, Vol. 52, Issue 1
  • DOI: 10.1088/1361-6463/aad926

Thermoelectric Properties of Scandium Sesquitelluride
journal, March 2019

  • Cheikh, Dean; Lee, Kathleen; Peng, Wanyue
  • Materials, Vol. 12, Issue 5
  • DOI: 10.3390/ma12050734