skip to main content


Title: Thermal-hydraulic performance of metal foam heat exchangers under dry operating conditions

High porosity metal foams with novel thermal, mechanical, electrical, and acoustic properties are being more widely adopted for application. Due to their large surface-area-to-volume ratio and complex structure which induces better fluid mixing, boundary layer restarting and wake destruction, they hold promise for heat transfer applications. In this study, the thermal-hydraulic performance of open-cell aluminum metal foam heat exchanger has been evaluated. The impact of flow conditions and metal foam geometry on the heat transfer coefficient and gradient have been investigated. Metal foam heat exchanger with same geometry (face area, flow depth and fin dimensions) consisting of four different type of metal foams have been built for the study. Experiments are conducted in a closed-loop wind tunnel at different flow rate under dry operating condition. Metal foams with a smaller pore size (40 PPI) have a larger heat transfer coefficient compared to foams with a larger pore size (5 PPI). However, foams with larger pores result in relatively smaller pressure gradients. Current thermal-hydraulic modeling practices have been reviewed and potential issues have been identified. Permeability and inertia coefficients are determined and compared to data reported in open literature. Finally, on the basis of the new experimental results, correlations are developedmore » relating the foam characteristics and flow conditions through the friction factor f and the Colburn j factor.« less
ORCiD logo [1] ;  [2] ;  [3]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Building and Equipment Research Group
  2. Univ. of Evansville, IN (United States). Dept. of Mechanical and Civil Engineering
  3. Univ. of Illinois, Urbana, IL (United States). Dept. of Mechanical Science and Engineering
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Applied Thermal Engineering
Additional Journal Information:
Journal Volume: 119; Journal ID: ISSN 1359-4311
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
Contributing Orgs:
Univ. of Evansville, IN (United States); Univ. of Illinois, Urbana, IL (United States)
Country of Publication:
United States
42 ENGINEERING; 36 MATERIALS SCIENCE; Metal foams; Pressure drop; Heat transfer coefficient; Heat exchanger
OSTI Identifier: