DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A sodium–aluminum hybrid battery

Abstract

We present novel hybrid batteries that are fabricated using an aluminum anode, a sodium intercalation cathode Na3V2(PO4)3 (NVP), and a sodium/aluminum dual salt electrolyte based on NaAlCl4 and an eutectic mixture of 1-ethyl-3-methylimidazolium chloride (EMImC) and aluminum chloride. Cyclic voltammograms indicate that increasing the molar concentration of AlCl3 in the electrolyte is beneficial to high coulombic efficiency of aluminum deposition/stripping, which, unfortunately, results in lower coulombic efficiency of sodium extraction/insertion in the cathode. Therefore, EMImC–AlCl3 with a molar ratio of 1–1.1 is used for battery evaluation. The hybrid battery with 1.0 M NaAlCl4 exhibits a discharge voltage of 1.25 V and a cathodic capacity of 99 mA h g-1 at a current rate of C/10. In addition, the hybrid battery exhibits good rate performance and long-term cycling stability while maintaining a high coulombic efficiency of 98%. It is also demonstrated that increasing salt concentration can further enhance the cycling performance of the hybrid battery. X-ray diffraction analysis of the NVP electrodes under different conditions confirms that the main cathode reaction is indeed Na extraction/insertion. Based on all earth-abundant elements, the new Na–Al hybrid battery is very attractive for stationary and grid energy storage applications.

Authors:
ORCiD logo [1];  [2];  [3];  [1];  [4];  [2];  [5]; ORCiD logo [6]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
  2. University of Chinese Academy of Sciences, Beijing (China). Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Northeast Normal University (China). Department of Chemistry
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division ; Univ. of Tennessee, Knoxville, TN (United States). Department of Chemistry
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division
  6. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division ; Univ. of Tennessee, Knoxville, TN (United States). Department of Chemistry
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1352758
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 5; Journal Issue: 14; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE

Citation Formats

Sun, Xiao-Guang, Zhang, Zhizhen, Guan, Hong Yu, Bridges, Craig A., Fang, Youxing, Hu, Yong-Sheng, Veith, Gabriel M., and Dai, Sheng. A sodium–aluminum hybrid battery. United States: N. p., 2017. Web. doi:10.1039/C7TA00191F.
Sun, Xiao-Guang, Zhang, Zhizhen, Guan, Hong Yu, Bridges, Craig A., Fang, Youxing, Hu, Yong-Sheng, Veith, Gabriel M., & Dai, Sheng. A sodium–aluminum hybrid battery. United States. https://doi.org/10.1039/C7TA00191F
Sun, Xiao-Guang, Zhang, Zhizhen, Guan, Hong Yu, Bridges, Craig A., Fang, Youxing, Hu, Yong-Sheng, Veith, Gabriel M., and Dai, Sheng. Tue . "A sodium–aluminum hybrid battery". United States. https://doi.org/10.1039/C7TA00191F. https://www.osti.gov/servlets/purl/1352758.
@article{osti_1352758,
title = {A sodium–aluminum hybrid battery},
author = {Sun, Xiao-Guang and Zhang, Zhizhen and Guan, Hong Yu and Bridges, Craig A. and Fang, Youxing and Hu, Yong-Sheng and Veith, Gabriel M. and Dai, Sheng},
abstractNote = {We present novel hybrid batteries that are fabricated using an aluminum anode, a sodium intercalation cathode Na3V2(PO4)3 (NVP), and a sodium/aluminum dual salt electrolyte based on NaAlCl4 and an eutectic mixture of 1-ethyl-3-methylimidazolium chloride (EMImC) and aluminum chloride. Cyclic voltammograms indicate that increasing the molar concentration of AlCl3 in the electrolyte is beneficial to high coulombic efficiency of aluminum deposition/stripping, which, unfortunately, results in lower coulombic efficiency of sodium extraction/insertion in the cathode. Therefore, EMImC–AlCl3 with a molar ratio of 1–1.1 is used for battery evaluation. The hybrid battery with 1.0 M NaAlCl4 exhibits a discharge voltage of 1.25 V and a cathodic capacity of 99 mA h g-1 at a current rate of C/10. In addition, the hybrid battery exhibits good rate performance and long-term cycling stability while maintaining a high coulombic efficiency of 98%. It is also demonstrated that increasing salt concentration can further enhance the cycling performance of the hybrid battery. X-ray diffraction analysis of the NVP electrodes under different conditions confirms that the main cathode reaction is indeed Na extraction/insertion. Based on all earth-abundant elements, the new Na–Al hybrid battery is very attractive for stationary and grid energy storage applications.},
doi = {10.1039/C7TA00191F},
journal = {Journal of Materials Chemistry. A},
number = 14,
volume = 5,
place = {United States},
year = {Tue Mar 07 00:00:00 EST 2017},
month = {Tue Mar 07 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electrodeposition of Aluminum from the Aluminum Chloride-1-Methyl-3-ethylimidazolium Chloride Room Temperature Molten Salt + Benzene
journal, January 1997

  • Liao, Qing
  • Journal of The Electrochemical Society, Vol. 144, Issue 3
  • DOI: 10.1149/1.1837510

Magnesium batteries: Current state of the art, issues and future perspectives
journal, January 2014

  • Mohtadi, Rana; Mizuno, Fuminori
  • Beilstein Journal of Nanotechnology, Vol. 5
  • DOI: 10.3762/bjnano.5.143

Ionic-liquid materials for the electrochemical challenges of the future
journal, July 2009

  • Armand, Michel; Endres, Frank; MacFarlane, Douglas R.
  • Nature Materials, Vol. 8, Issue 8, p. 621-629
  • DOI: 10.1038/nmat2448

Electrodeposition of aluminium from nonaqueous organic electrolytic systems and room temperature molten salts
journal, January 1997


Efficient and Inexpensive Sodium–Magnesium Hybrid Battery
journal, October 2015


Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries
journal, January 2015

  • Liu, S.; Pan, G. L.; Li, G. R.
  • Journal of Materials Chemistry A, Vol. 3, Issue 3
  • DOI: 10.1039/C4TA04644G

Ionic liquids and their solid-state analogues as materials for energy generation and storage
journal, January 2016

  • MacFarlane, Douglas R.; Forsyth, Maria; Howlett, Patrick C.
  • Nature Reviews Materials, Vol. 1, Issue 2
  • DOI: 10.1038/natrevmats.2015.5

Do all ionic liquids need organic cations? Characterisation of [AlCl2·nAmide]+ AlCl4− and comparison with imidazolium based systems
journal, January 2011

  • Abood, Hadi M. A.; Abbott, Andrew P.; Ballantyne, Andrew D.
  • Chemical Communications, Vol. 47, Issue 12
  • DOI: 10.1039/c0cc04989a

Rechargeable magnesium battery: Current status and key challenges for the future
journal, October 2014


Sulfone-based electrolytes for aluminum electrodeposition
journal, August 1995


Mechanistic investigation of ion migration in Na 3 V 2 (PO 4 ) 2 F 3 hybrid-ion batteries
journal, January 2015

  • Song, Weixin; Ji, Xiaobo; Chen, Jun
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 1
  • DOI: 10.1039/C4CP04649H

Physicochemical Properties and Structures of Room-Temperature Ionic Liquids. 3. Variation of Cationic Structures
journal, February 2006

  • Tokuda, Hiroyuki; Ishii, Kunikazu; Susan, Md. Abu Bin Hasan
  • The Journal of Physical Chemistry B, Vol. 110, Issue 6
  • DOI: 10.1021/jp053396f

An ultrafast rechargeable aluminium-ion battery
journal, April 2015

  • Lin, Meng-Chang; Gong, Ming; Lu, Bingan
  • Nature, Vol. 520, Issue 7547
  • DOI: 10.1038/nature14340

Ionic liquid-based electrolytes for “beyond lithium” battery technologies
journal, January 2016

  • Giffin, Guinevere A.
  • Journal of Materials Chemistry A, Vol. 4, Issue 35
  • DOI: 10.1039/C6TA05260F

An Advanced Sodium-Ion Battery Composed of Carbon Coated Na 3 V 2 (PO 4 ) 3 in a Porous Graphene Network
journal, September 2015


Reversible Electrochemical Intercalation of Aluminum in Mo 6 S 8
journal, July 2015


The Roles of V 2 O 5 and Stainless Steel in Rechargeable Al–Ion Batteries
journal, January 2013

  • Reed, Luke D.; Menke, Erik
  • Journal of The Electrochemical Society, Vol. 160, Issue 6
  • DOI: 10.1149/2.114306jes

Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis
journal, March 1982

  • Wilkes, John S.; Levisky, Joseph A.; Wilson, Robert A.
  • Inorganic Chemistry, Vol. 21, Issue 3
  • DOI: 10.1021/ic00133a078

The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3
journal, July 2006


Sodium and sodium-ion energy storage batteries
journal, August 2012

  • Ellis, Brian L.; Nazar, Linda F.
  • Current Opinion in Solid State and Materials Science, Vol. 16, Issue 4, p. 168-177
  • DOI: 10.1016/j.cossms.2012.04.002

High performance batteries based on hybrid magnesium and lithium chemistry
journal, January 2014

  • Cheng, Yingwen; Shao, Yuyan; Zhang, Ji-Guang
  • Chem. Commun., Vol. 50, Issue 68
  • DOI: 10.1039/C4CC03620D

An Overview and Future Perspectives of Aluminum Batteries
journal, June 2016

  • Elia, Giuseppe Antonio; Marquardt, Krystan; Hoeppner, Katrin
  • Advanced Materials, Vol. 28, Issue 35
  • DOI: 10.1002/adma.201601357

Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries
journal, January 2012

  • Liu, S.; Hu, J. J.; Yan, N. F.
  • Energy & Environmental Science, Vol. 5, Issue 12
  • DOI: 10.1039/c2ee22987k

Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries
journal, January 2015

  • Wang, Huali; Gu, Sichen; Bai, Ying
  • Journal of Materials Chemistry A, Vol. 3, Issue 45
  • DOI: 10.1039/C5TA06187C

A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries
journal, January 2014

  • Liu, Tianbiao; Shao, Yuyan; Li, Guosheng
  • Journal of Materials Chemistry A, Vol. 2, Issue 10
  • DOI: 10.1039/c3ta14825d

Prototype systems for rechargeable magnesium batteries
journal, October 2000

  • Aurbach, D.; Lu, Z.; Schechter, A.
  • Nature, Vol. 407, Issue 6805, p. 724-727
  • DOI: 10.1038/35037553

Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
journal, January 2013

  • Pan, Huilin; Hu, Yong-Sheng; Chen, Liquan
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee40847g

Electrodeposition Studies of Aluminum on Tungsten Electrode from DMSO[sub 2] Electrolytes
journal, January 1994

  • Legrand, L.
  • Journal of The Electrochemical Society, Vol. 141, Issue 2
  • DOI: 10.1149/1.2054735

A High Capacity Calcium Primary Cell Based on the Ca-S System
journal, April 2013

  • See, Kimberly A.; Gerbec, Jeffrey A.; Jun, Young-Si
  • Advanced Energy Materials, Vol. 3, Issue 8
  • DOI: 10.1002/aenm.201300160

The Electrodeposition of Aluminum from Nonaqueous Solutions at Room Temperature
journal, January 1951

  • Hurley, Frank H.; WIer, Thomas P.
  • Journal of The Electrochemical Society, Vol. 98, Issue 5
  • DOI: 10.1149/1.2778133

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


New ionic liquids based on the complexation of dipropyl sulfide and AlCl 3 for electrodeposition of aluminum
journal, January 2015

  • Fang, Youxing; Jiang, Xueguang; Sun, Xiao-Guang
  • Chemical Communications, Vol. 51, Issue 68
  • DOI: 10.1039/C5CC05233E

Lithium-Sulfur Cells: The Gap between the State-of-the-Art and the Requirements for High Energy Battery Cells
journal, April 2015

  • Hagen, Markus; Hanselmann, Dominik; Ahlbrecht, Katharina
  • Advanced Energy Materials, Vol. 5, Issue 16, 1401986
  • DOI: 10.1002/aenm.201401986

Bicyclic imidazolium ionic liquids as potential electrolytes for rechargeable lithium ion batteries
journal, September 2013


Mg rechargeable batteries: an on-going challenge
journal, January 2013

  • Yoo, Hyun Deog; Shterenberg, Ivgeni; Gofer, Yosef
  • Energy & Environmental Science, Vol. 6, Issue 8, p. 2265-2279
  • DOI: 10.1039/c3ee40871j

Sulfone-based electrolytes for aluminium rechargeable batteries
journal, January 2015

  • Nakayama, Yuri; Senda, Yui; Kawasaki, Hideki
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 8
  • DOI: 10.1039/C4CP02183E

A concept of dual-salt polyvalent-metal storage battery
journal, January 2014

  • Yagi, Shunsuke; Ichitsubo, Tetsu; Shirai, Yoshimasa
  • J. Mater. Chem. A, Vol. 2, Issue 4
  • DOI: 10.1039/C3TA13668J

Towards a calcium-based rechargeable battery
journal, October 2015

  • Ponrouch, A.; Frontera, C.; Bardé, F.
  • Nature Materials, Vol. 15, Issue 2
  • DOI: 10.1038/nmat4462

A magnesium–sodium hybrid battery with high operating voltage
journal, January 2016

  • Dong, Hui; Li, Yifei; Liang, Yanliang
  • Chemical Communications, Vol. 52, Issue 53
  • DOI: 10.1039/C6CC03081E

Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries
journal, May 2012

  • Kim, Sung-Wook; Seo, Dong-Hwa; Ma, Xiaohua
  • Advanced Energy Materials, Vol. 2, Issue 7, p. 710-721
  • DOI: 10.1002/aenm.201200026

The rechargeable aluminum-ion battery
journal, January 2011

  • Jayaprakash, N.; Das, S. K.; Archer, L. A.
  • Chemical Communications, Vol. 47, Issue 47
  • DOI: 10.1039/c1cc15779e

A new aluminium-ion battery with high voltage, high safety and low cost
journal, January 2015

  • Sun, Haobo; Wang, Wei; Yu, Zhijing
  • Chemical Communications, Vol. 51, Issue 59
  • DOI: 10.1039/C5CC00542F

Research Development on Sodium-Ion Batteries
journal, October 2014

  • Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500192f

Aluminium electrodeposition under ambient conditions
journal, January 2014

  • Abbott, Andrew P.; Harris, Robert C.; Hsieh, Yi-Ting
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 28
  • DOI: 10.1039/C4CP01508H

A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation
journal, November 2013

  • Wang, Wei; Jiang, Bo; Xiong, Weiyi
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep03383

Chloroaluminate-Doped Conducting Polymers as Positive Electrodes in Rechargeable Aluminum Batteries
journal, March 2014

  • Hudak, Nicholas S.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 10
  • DOI: 10.1021/jp500593d

Liquid Coordination Complexes Formed by the Heterolytic Cleavage of Metal Halides
journal, October 2013

  • Coleman, Fergal; Srinivasan, Geetha; Swadźba-Kwaśny, Małgorzata
  • Angewandte Chemie International Edition, Vol. 52, Issue 48
  • DOI: 10.1002/anie.201306267

A Rechargeable Al/S Battery with an Ionic-Liquid Electrolyte
journal, July 2016

  • Gao, Tao; Li, Xiaogang; Wang, Xiwen
  • Angewandte Chemie International Edition, Vol. 55, Issue 34
  • DOI: 10.1002/anie.201603531

Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 1. Variation of Anionic Species
journal, October 2004

  • Tokuda, Hiroyuki; Hayamizu, Kikuko; Ishii, Kunikazu
  • The Journal of Physical Chemistry B, Vol. 108, Issue 42
  • DOI: 10.1021/jp047480r

The story of aluminum
journal, February 1930

  • Holmes, Harry N.
  • Journal of Chemical Education, Vol. 7, Issue 2
  • DOI: 10.1021/ed007p232

High Coulombic efficiency aluminum-ion battery using an AlCl 3 -urea ionic liquid analog electrolyte
journal, January 2017

  • Angell, Michael; Pan, Chun-Jern; Rong, Youmin
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 5
  • DOI: 10.1073/pnas.1619795114

Hybrid Mg 2+ /Li + Battery with Long Cycle Life and High Rate Capability
journal, November 2014


Structure and compatibility of a magnesium electrolyte with a sulphur cathode
journal, August 2011

  • Kim, Hee Soo; Arthur, Timothy S.; Allred, Gary D.
  • Nature Communications, Vol. 2, Article No. 427
  • DOI: 10.1038/ncomms1435

Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Binder-Free V 2 O 5 Cathode for Greener Rechargeable Aluminum Battery
journal, December 2014

  • Wang, Huali; Bai, Ying; Chen, Shi
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 1
  • DOI: 10.1021/am508001h

Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries
journal, January 2016

  • Sun, Xiao-Guang; Fang, Youxing; Jiang, Xueguang
  • Chemical Communications, Vol. 52, Issue 2, p. 292-295
  • DOI: 10.1039/C5CC06643C

Electrodeposition of Metals and Semiconductors in Air- and Water-Stable Ionic Liquids
journal, January 2006


Na 3 V 2 (PO 4 ) 2 F 3 Revisited: A High-Resolution Diffraction Study
journal, June 2014

  • Bianchini, M.; Brisset, N.; Fauth, F.
  • Chemistry of Materials, Vol. 26, Issue 14
  • DOI: 10.1021/cm501644g

Electrochemical investigations of ionic liquids with vinylene carbonate for applications in rechargeable lithium ion batteries
journal, June 2010


Fluorinated Natural Graphite Cathode for Rechargeable Ionic Liquid Based Aluminum–Ion Battery
journal, January 2013

  • Rani, J. Vatsala; Kanakaiah, V.; Dadmal, Tulshiram
  • Journal of The Electrochemical Society, Vol. 160, Issue 10
  • DOI: 10.1149/2.072310jes

Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries
journal, January 2012


An AlCl3 based ionic liquid with a neutral substituted pyridine ligand for electrochemical deposition of aluminum
journal, April 2015


Investigation on the Structural Evolutions during the Insertion of Aluminum Ions into Mo 6 S 8 Chevrel Phase
journal, January 2016

  • Lee, Boeun; Lee, Hae Ri; Yim, Taeeun
  • Journal of The Electrochemical Society, Vol. 163, Issue 6
  • DOI: 10.1149/2.0011607jes

Layer-by-Layer Na 3 V 2 (PO 4 ) 3 Embedded in Reduced Graphene Oxide as Superior Rate and Ultralong-Life Sodium-Ion Battery Cathode
journal, May 2016


Aluminum as anode for energy storage and conversion: a review
journal, July 2002


A rechargeable aluminum-ion battery utilizing a copper hexacyanoferrate cathode in an organic electrolyte
journal, January 2015

  • Reed, L. D.; Ortiz, S. N.; Xiong, M.
  • Chemical Communications, Vol. 51, Issue 76
  • DOI: 10.1039/C5CC06053B

Superior Electrochemical Performance and Storage Mechanism of Na 3 V 2 (PO 4 ) 3 Cathode for Room-Temperature Sodium-Ion Batteries
journal, October 2012


Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid
journal, June 2012

  • Liu, Jun; Zhang, Ji-Guang; Yang, Zhenguo
  • Advanced Functional Materials, Vol. 23, Issue 8
  • DOI: 10.1002/adfm.201200690

Sol–gel preparation and electrochemical properties of Na3V2(PO4)2F3/C composite cathode material for lithium ion batteries
journal, June 2009


Towards greener and more sustainable batteries for electrical energy storage
journal, November 2014


Quest for Nonaqueous Multivalent Secondary Batteries: Magnesium and Beyond
journal, October 2014

  • Muldoon, John; Bucur, Claudiu B.; Gregory, Thomas
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500049y

Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in Imidazolium Cation
journal, April 2005

  • Tokuda, Hiroyuki; Hayamizu, Kikuko; Ishii, Kunikazu
  • The Journal of Physical Chemistry B, Vol. 109, Issue 13
  • DOI: 10.1021/jp044626d

A high performance hybrid battery based on aluminum anode and LiFePO 4 cathode
journal, January 2016

  • Sun, Xiao-Guang; Bi, Zhonghe; Liu, Hansan
  • Chemical Communications, Vol. 52, Issue 8
  • DOI: 10.1039/C5CC09019A

Phase-Controlled Electrochemical Activity of Epitaxial Mg-Spinel Thin Films
journal, December 2015

  • Feng, Zhenxing; Chen, Xiao; Qiao, Liang
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 51
  • DOI: 10.1021/acsami.5b09346

Works referencing / citing this record:

Emerging Nonaqueous Aluminum-Ion Batteries: Challenges, Status, and Perspectives
journal, June 2018


Paving the Path toward Reliable Cathode Materials for Aluminum-Ion Batteries
journal, February 2019


Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)-Ion Batteries
journal, June 2017


Fast Diffusion of Multivalent Ions Facilitated by Concerted Interactions in Dual-Ion Battery Systems
journal, August 2018

  • Li, Hongyi; Okamoto, Norihiko L.; Hatakeyama, Takuya
  • Advanced Energy Materials, Vol. 8, Issue 27
  • DOI: 10.1002/aenm.201801475

Die wiederaufladbare Aluminiumbatterie: Möglichkeiten und Herausforderungen
journal, June 2019


The Rechargeable Aluminum Battery: Opportunities and Challenges
journal, August 2019

  • Yang, Huicong; Li, Hucheng; Li, Juan
  • Angewandte Chemie International Edition, Vol. 58, Issue 35
  • DOI: 10.1002/anie.201814031

Ion Dynamics in Ionic-Liquid-Based Li-Ion Electrolytes Investigated by Neutron Scattering and Dielectric Spectroscopy
journal, September 2018


Vanadium-Based Cathode Materials for Rechargeable Multivalent Batteries: Challenges and Opportunities
journal, June 2018