skip to main content

DOE PAGESDOE PAGES

Title: Optimization of transition edge sensor arrays for cosmic microwave background observations with the south pole telescope

Here, we describe the optimization of transition-edge-sensor (TES) detector arrays for the third-generation camera for the South Pole Telescope.The camera, which contains ~16 000 detectors, will make high-angular-resolution maps of the temperature and polarization of the cosmic microwave background. Our key results are scatter in the transition temperature of Ti/Au TESs is reduced by fabricating the TESs on a thin Ti(5 nm)/Au(5 nm) buffer layer and the thermal conductivity of the legs that support our detector islands is dominated by the SiOx dielectric in the microstrip transmission lines that run along the legs.
Authors:
 [1] ;  [2] ;  [3] ;  [4] ;  [5] ;  [6] ;  [7] ;  [8] ;  [9] ;  [8] ;  [1] ;  [10] ;  [8] ;  [8] ;  [11] ;  [12] ;  [4] ;  [1] ;  [1] ;  [4] more »;  [13] ;  [14] ;  [15] ;  [12] ;  [1] ;  [16] ;  [17] ;  [4] ;  [18] ;  [19] ;  [7] ;  [4] ;  [7] ;  [4] ;  [5] ;  [4] ;  [1] ;  [3] ;  [5] ;  [4] ;  [14] ;  [20] ;  [1] ;  [12] ;  [16] ;  [21] ;  [3] ;  [1] ;  [8] ;  [14] ;  [1] ;  [1] ;  [3] ;  [22] ;  [23] ;  [23] ;  [15] ;  [23] ;  [4] ;  [14] ;  [24] ;  [14] ;  [1] ;  [25] ;  [26] ;  [4] ;  [14] ;  [19] ;  [5] ;  [2] ;  [27] ;  [16] ;  [1] ;  [4] ;  [4] ;  [1] ;  [5] « less
  1. Argonne National Lab. (ANL), Argonne, IL (United States)
  2. Cardiff Univ., Cardiff (United Kingdom)
  3. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
  4. Univ. of California, Berkeley, CA (United States)
  5. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  6. Univ. of Wisconsin, Madison, WI (United States)
  7. NIST Quantum Devices Group, Boulder, CO (United States)
  8. Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Chicago, IL (United States)
  9. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Univ. of Chicago, IL (United States)
  10. Univ. of Chicago, Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
  11. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  12. McGill Univ., Montreal, QC (Canada)
  13. McGill Univ., Montreal, QC (Canada); Canadian Inst. for Advanced Research, Toronto, ON (Canada). CIFAR Program in Cosmology and Gravity
  14. Kavli Institute for Cosmological Physics, Chicago, IL (United States); Univ. of Chicago, IL (United States)
  15. Univ. of Colorado, Boulder, CO (United States)
  16. Univ. of Illinois, Urbana, IL (United States)
  17. Dept of Astrophysical and Planetary Sciences, Boulder, CO (United States)
  18. High Energy Accelerator Research Organization, Tsukuba (Japan)
  19. Univ. of Chicago, Chicago, IL (United States)
  20. Kavli Institute for Cosmological Physics, Chicago, IL (United States)
  21. Univ. of Toronto, Toronto, ON (Canada)
  22. Univ. of Melbourne, Parkville, VIC (Australia)
  23. Case Western Reserve Univ., Cleveland, OH (United States)
  24. Three-Speed Logic, Inc., Vancouver, BC (Canada)
  25. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)
  26. Kavli Institute for Particle Astrophysics and Cosmology, Menlo Park, CA (United States)
  27. Dunlap Institute for Astronomy and Astrophysics, Toronto, ON (Canada)
Publication Date:
Grant/Contract Number:
PLR-1248097; AC02-06CH11357; PHY-1125897; GBMF 947; AST-0956135; AC02-76SF00515
Type:
Published Article
Journal Name:
IEEE Transactions on Applied Superconductivity
Additional Journal Information:
Journal Volume: 27; Journal Issue: 4; Journal ID: ISSN 1051-8223
Publisher:
Institute of Electrical and Electronics Engineers (IEEE)
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Scientific User Facilities Division; National Science Foundation (NSF); Gordon and Betty Moore Foundation; Natural Sciences and Engineering Research Council of Canada (NSERC); Canadian Institute for Advanced Research (CIFAR); Canada Research Chairs Program
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; south pole telescope; transition edge sensors; superconducting detectors; bolometers; cosmic microwave background
OSTI Identifier:
1352724
Alternate Identifier(s):
OSTI ID: 1347708; OSTI ID: 1352725; OSTI ID: 1458493

Ding, Junjia, Ade, P. A. R., Anderson, A. J., Avva, J., Ahmed, Z., Arnold, K., Austermann, J. E., Bender, A. N., Benson, B. A., Bleem, L. E., Byrum, K., Carlstrom, J. E., Carter, F. W., Chang, C. L., Cho, H. M., Cliche, J. F., Cukierman, A., Czaplewski, D., Divan, R., de Haan, T., Dobbs, M. A., Dutcher, D., Everett, W., Gilbert, A., Gannon, R., Guyser, R., Halverson, N. W., Harrington, N. L., Hattori, K., Henning, J. W., Hilton, G. C., Holzapfel, W. L., Hubmayr, J., Huang, N., Irwin, K. D., Jeong, O., Khaire, T., Kubik, D., Kuo, C. L., Lee, A. T., Leitch, E. M., Meyer, S. S., Miller, C. S., Montgomery, J., Nadolski, A., Natoli, T., Nguyen, H., Novosad, V., Padin, S., Pan, Z., Pearson, J., Posada, C. M., Rahlin, A., Reichardt, C. L., Ruhl, J. E., Saliwanchik, B. R., Sayre, J. T., Shariff, J. A., Shirley, I., Shirokoff, E., Smecher, G., Sobrin, J., Stan, L., Stark, A. A., Story, K., Suzuki, A., Tang, Q. Y., Thakur, R. B., Thompson, K. L., Tucker, C., Vanderlinde, K., Vieira, J. D., Wang, G., Whitehorn, N., Wu, W. L. K., Yefremenko, V., and Yoon, K. W.. Optimization of transition edge sensor arrays for cosmic microwave background observations with the south pole telescope. United States: N. p., Web. doi:10.1109/TASC.2016.2639378.
Ding, Junjia, Ade, P. A. R., Anderson, A. J., Avva, J., Ahmed, Z., Arnold, K., Austermann, J. E., Bender, A. N., Benson, B. A., Bleem, L. E., Byrum, K., Carlstrom, J. E., Carter, F. W., Chang, C. L., Cho, H. M., Cliche, J. F., Cukierman, A., Czaplewski, D., Divan, R., de Haan, T., Dobbs, M. A., Dutcher, D., Everett, W., Gilbert, A., Gannon, R., Guyser, R., Halverson, N. W., Harrington, N. L., Hattori, K., Henning, J. W., Hilton, G. C., Holzapfel, W. L., Hubmayr, J., Huang, N., Irwin, K. D., Jeong, O., Khaire, T., Kubik, D., Kuo, C. L., Lee, A. T., Leitch, E. M., Meyer, S. S., Miller, C. S., Montgomery, J., Nadolski, A., Natoli, T., Nguyen, H., Novosad, V., Padin, S., Pan, Z., Pearson, J., Posada, C. M., Rahlin, A., Reichardt, C. L., Ruhl, J. E., Saliwanchik, B. R., Sayre, J. T., Shariff, J. A., Shirley, I., Shirokoff, E., Smecher, G., Sobrin, J., Stan, L., Stark, A. A., Story, K., Suzuki, A., Tang, Q. Y., Thakur, R. B., Thompson, K. L., Tucker, C., Vanderlinde, K., Vieira, J. D., Wang, G., Whitehorn, N., Wu, W. L. K., Yefremenko, V., & Yoon, K. W.. Optimization of transition edge sensor arrays for cosmic microwave background observations with the south pole telescope. United States. doi:10.1109/TASC.2016.2639378.
Ding, Junjia, Ade, P. A. R., Anderson, A. J., Avva, J., Ahmed, Z., Arnold, K., Austermann, J. E., Bender, A. N., Benson, B. A., Bleem, L. E., Byrum, K., Carlstrom, J. E., Carter, F. W., Chang, C. L., Cho, H. M., Cliche, J. F., Cukierman, A., Czaplewski, D., Divan, R., de Haan, T., Dobbs, M. A., Dutcher, D., Everett, W., Gilbert, A., Gannon, R., Guyser, R., Halverson, N. W., Harrington, N. L., Hattori, K., Henning, J. W., Hilton, G. C., Holzapfel, W. L., Hubmayr, J., Huang, N., Irwin, K. D., Jeong, O., Khaire, T., Kubik, D., Kuo, C. L., Lee, A. T., Leitch, E. M., Meyer, S. S., Miller, C. S., Montgomery, J., Nadolski, A., Natoli, T., Nguyen, H., Novosad, V., Padin, S., Pan, Z., Pearson, J., Posada, C. M., Rahlin, A., Reichardt, C. L., Ruhl, J. E., Saliwanchik, B. R., Sayre, J. T., Shariff, J. A., Shirley, I., Shirokoff, E., Smecher, G., Sobrin, J., Stan, L., Stark, A. A., Story, K., Suzuki, A., Tang, Q. Y., Thakur, R. B., Thompson, K. L., Tucker, C., Vanderlinde, K., Vieira, J. D., Wang, G., Whitehorn, N., Wu, W. L. K., Yefremenko, V., and Yoon, K. W.. 2016. "Optimization of transition edge sensor arrays for cosmic microwave background observations with the south pole telescope". United States. doi:10.1109/TASC.2016.2639378.
@article{osti_1352724,
title = {Optimization of transition edge sensor arrays for cosmic microwave background observations with the south pole telescope},
author = {Ding, Junjia and Ade, P. A. R. and Anderson, A. J. and Avva, J. and Ahmed, Z. and Arnold, K. and Austermann, J. E. and Bender, A. N. and Benson, B. A. and Bleem, L. E. and Byrum, K. and Carlstrom, J. E. and Carter, F. W. and Chang, C. L. and Cho, H. M. and Cliche, J. F. and Cukierman, A. and Czaplewski, D. and Divan, R. and de Haan, T. and Dobbs, M. A. and Dutcher, D. and Everett, W. and Gilbert, A. and Gannon, R. and Guyser, R. and Halverson, N. W. and Harrington, N. L. and Hattori, K. and Henning, J. W. and Hilton, G. C. and Holzapfel, W. L. and Hubmayr, J. and Huang, N. and Irwin, K. D. and Jeong, O. and Khaire, T. and Kubik, D. and Kuo, C. L. and Lee, A. T. and Leitch, E. M. and Meyer, S. S. and Miller, C. S. and Montgomery, J. and Nadolski, A. and Natoli, T. and Nguyen, H. and Novosad, V. and Padin, S. and Pan, Z. and Pearson, J. and Posada, C. M. and Rahlin, A. and Reichardt, C. L. and Ruhl, J. E. and Saliwanchik, B. R. and Sayre, J. T. and Shariff, J. A. and Shirley, I. and Shirokoff, E. and Smecher, G. and Sobrin, J. and Stan, L. and Stark, A. A. and Story, K. and Suzuki, A. and Tang, Q. Y. and Thakur, R. B. and Thompson, K. L. and Tucker, C. and Vanderlinde, K. and Vieira, J. D. and Wang, G. and Whitehorn, N. and Wu, W. L. K. and Yefremenko, V. and Yoon, K. W.},
abstractNote = {Here, we describe the optimization of transition-edge-sensor (TES) detector arrays for the third-generation camera for the South Pole Telescope.The camera, which contains ~16 000 detectors, will make high-angular-resolution maps of the temperature and polarization of the cosmic microwave background. Our key results are scatter in the transition temperature of Ti/Au TESs is reduced by fabricating the TESs on a thin Ti(5 nm)/Au(5 nm) buffer layer and the thermal conductivity of the legs that support our detector islands is dominated by the SiOx dielectric in the microstrip transmission lines that run along the legs.},
doi = {10.1109/TASC.2016.2639378},
journal = {IEEE Transactions on Applied Superconductivity},
number = 4,
volume = 27,
place = {United States},
year = {2016},
month = {12}
}