skip to main content

DOE PAGESDOE PAGES

Title: Amorphous TiO 2 Compact Layers via ALD for Planar Halide Perovskite Photovoltaics

A low temperature (< 120 °C) route to pinhole-free amorphous TiO 2 compact layers may pave the way to more efficient, flexible, and stable inverted perovskite halide device designs. Toward this end, we utilize low-temperature thermal atomic layer deposition (ALD) to synthesize ultra-thin (12 nm) compact TiO 2 underlayers for planar halide perovskite PV. While device performance with as-deposited TiO 2 films is poor, we identify room temperature UV-O 3 treatment as a route to device efficiency comparable to crystalline TiO 2 thin films synthesized by higher temperature methods. Here, we further explore the chemical, physical, and interfacial properties 2 that might explain the improved performance through x-ray diffraction, spectroscopic ellipsometry, Raman spectroscopy, and x-ray photoelectron spectroscopy. These findings challenge our intuition about effective electron selective layers as well as point the way to a greater selection of flexible substrates and more stable inverted device designs.
Authors:
 [1] ;  [2] ;  [3] ;  [3] ;  [4] ;  [4] ;  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division; Argonne-Northwestern Solar Energy Research (ANSER) Center, Evanston, IL (United States)
  2. Univ. of Illinois, Urbana-Champaign, IL (United States). Frederick Seitz Materials Research Lab.
  3. Argonne-Northwestern Solar Energy Research (ANSER) Center, Evanston, IL (United States); Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry
  4. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division; Argonne-Northwestern Solar Energy Research (ANSER) Center, Evanston, IL (United States); Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry
Publication Date:
Grant/Contract Number:
AC02-06CH11357; SC0001059
Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 8; Journal Issue: 37; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; amorphous titanium dioxide; atomic layer deposition; hybrid perovskites; low temperature processing; solar energy conversion
OSTI Identifier:
1352602