skip to main content

DOE PAGESDOE PAGES

Title: Amorphous TiO 2 Compact Layers via ALD for Planar Halide Perovskite Photovoltaics

A low temperature (< 120 °C) route to pinhole-free amorphous TiO 2 compact layers may pave the way to more efficient, flexible, and stable inverted perovskite halide device designs. Toward this end, we utilize low-temperature thermal atomic layer deposition (ALD) to synthesize ultra-thin (12 nm) compact TiO 2 underlayers for planar halide perovskite PV. While device performance with as-deposited TiO 2 films is poor, we identify room temperature UV-O 3 treatment as a route to device efficiency comparable to crystalline TiO 2 thin films synthesized by higher temperature methods. Here, we further explore the chemical, physical, and interfacial properties 2 that might explain the improved performance through x-ray diffraction, spectroscopic ellipsometry, Raman spectroscopy, and x-ray photoelectron spectroscopy. These findings challenge our intuition about effective electron selective layers as well as point the way to a greater selection of flexible substrates and more stable inverted device designs.
Authors:
 [1] ;  [2] ;  [3] ;  [3] ;  [4] ;  [4] ;  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division; Argonne-Northwestern Solar Energy Research (ANSER) Center, Evanston, IL (United States)
  2. Univ. of Illinois, Urbana-Champaign, IL (United States). Frederick Seitz Materials Research Lab.
  3. Argonne-Northwestern Solar Energy Research (ANSER) Center, Evanston, IL (United States); Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry
  4. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division; Argonne-Northwestern Solar Energy Research (ANSER) Center, Evanston, IL (United States); Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry
Publication Date:
Grant/Contract Number:
AC02-06CH11357; SC0001059
Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 8; Journal Issue: 37; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; amorphous titanium dioxide; atomic layer deposition; hybrid perovskites; low temperature processing; solar energy conversion
OSTI Identifier:
1352602

Kim, In Soo, Haasch, Richard T., Cao, Duyen H., Farha, Omar K., Hupp, Joseph T., Kanatzidis, Mercouri G., and Martinson, Alex B. F.. Amorphous TiO2 Compact Layers via ALD for Planar Halide Perovskite Photovoltaics. United States: N. p., Web. doi:10.1021/acsami.6b07658.
Kim, In Soo, Haasch, Richard T., Cao, Duyen H., Farha, Omar K., Hupp, Joseph T., Kanatzidis, Mercouri G., & Martinson, Alex B. F.. Amorphous TiO2 Compact Layers via ALD for Planar Halide Perovskite Photovoltaics. United States. doi:10.1021/acsami.6b07658.
Kim, In Soo, Haasch, Richard T., Cao, Duyen H., Farha, Omar K., Hupp, Joseph T., Kanatzidis, Mercouri G., and Martinson, Alex B. F.. 2016. "Amorphous TiO2 Compact Layers via ALD for Planar Halide Perovskite Photovoltaics". United States. doi:10.1021/acsami.6b07658. https://www.osti.gov/servlets/purl/1352602.
@article{osti_1352602,
title = {Amorphous TiO2 Compact Layers via ALD for Planar Halide Perovskite Photovoltaics},
author = {Kim, In Soo and Haasch, Richard T. and Cao, Duyen H. and Farha, Omar K. and Hupp, Joseph T. and Kanatzidis, Mercouri G. and Martinson, Alex B. F.},
abstractNote = {A low temperature (< 120 °C) route to pinhole-free amorphous TiO2 compact layers may pave the way to more efficient, flexible, and stable inverted perovskite halide device designs. Toward this end, we utilize low-temperature thermal atomic layer deposition (ALD) to synthesize ultra-thin (12 nm) compact TiO2 underlayers for planar halide perovskite PV. While device performance with as-deposited TiO2 films is poor, we identify room temperature UV-O3 treatment as a route to device efficiency comparable to crystalline TiO2 thin films synthesized by higher temperature methods. Here, we further explore the chemical, physical, and interfacial properties 2 that might explain the improved performance through x-ray diffraction, spectroscopic ellipsometry, Raman spectroscopy, and x-ray photoelectron spectroscopy. These findings challenge our intuition about effective electron selective layers as well as point the way to a greater selection of flexible substrates and more stable inverted device designs.},
doi = {10.1021/acsami.6b07658},
journal = {ACS Applied Materials and Interfaces},
number = 37,
volume = 8,
place = {United States},
year = {2016},
month = {9}
}