DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanical Response of DNA–Nanoparticle Crystals to Controlled Deformation

Abstract

The self-assembly of DNA-conjugated nanoparticles represents a promising avenue toward the design of engineered hierarchical materials. By using DNA to encode nanoscale interactions, macroscale crystals can be formed with mechanical properties that can, at least in principle, be tuned. Here we present in silico evidence that the mechanical response of these assemblies can indeed be controlled, and that subtle modifications of the linking DNA sequences can change the Young’s modulus from 97 kPa to 2.1 MPa. We rely on a detailed molecular model to quantify the energetics of DNA–nanoparticle assembly and demonstrate that the mechanical response is governed by entropic, rather than enthalpic, contributions and that the response of the entire network can be estimated from the elastic properties of an individual nanoparticle. The results here provide a first step toward the mechanical characterization of DNA–nanoparticle assemblies, and suggest the possibility of mechanical metamaterials constructed using DNA.

Authors:
 [1];  [1];  [2];  [3]
  1. Univ. of Chicago, IL (United States). Institute for Molecular Engineering
  2. Univ. of Wisconsin, Madison, WI (United States). Department of Chemical and Biological Engineering
  3. Univ. of Chicago, IL (United States). Institute for Molecular Engineering; Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Institute of Standards and Technology (NIST)
OSTI Identifier:
1352578
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
ACS Central Science
Additional Journal Information:
Journal Volume: 2; Journal Issue: 9; Journal ID: ISSN 2374-7943
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Lequieu, Joshua, Córdoba, Andrés, Hinckley, Daniel, and de Pablo, Juan J. Mechanical Response of DNA–Nanoparticle Crystals to Controlled Deformation. United States: N. p., 2016. Web. doi:10.1021/acscentsci.6b00170.
Lequieu, Joshua, Córdoba, Andrés, Hinckley, Daniel, & de Pablo, Juan J. Mechanical Response of DNA–Nanoparticle Crystals to Controlled Deformation. United States. https://doi.org/10.1021/acscentsci.6b00170
Lequieu, Joshua, Córdoba, Andrés, Hinckley, Daniel, and de Pablo, Juan J. Wed . "Mechanical Response of DNA–Nanoparticle Crystals to Controlled Deformation". United States. https://doi.org/10.1021/acscentsci.6b00170. https://www.osti.gov/servlets/purl/1352578.
@article{osti_1352578,
title = {Mechanical Response of DNA–Nanoparticle Crystals to Controlled Deformation},
author = {Lequieu, Joshua and Córdoba, Andrés and Hinckley, Daniel and de Pablo, Juan J.},
abstractNote = {The self-assembly of DNA-conjugated nanoparticles represents a promising avenue toward the design of engineered hierarchical materials. By using DNA to encode nanoscale interactions, macroscale crystals can be formed with mechanical properties that can, at least in principle, be tuned. Here we present in silico evidence that the mechanical response of these assemblies can indeed be controlled, and that subtle modifications of the linking DNA sequences can change the Young’s modulus from 97 kPa to 2.1 MPa. We rely on a detailed molecular model to quantify the energetics of DNA–nanoparticle assembly and demonstrate that the mechanical response is governed by entropic, rather than enthalpic, contributions and that the response of the entire network can be estimated from the elastic properties of an individual nanoparticle. The results here provide a first step toward the mechanical characterization of DNA–nanoparticle assemblies, and suggest the possibility of mechanical metamaterials constructed using DNA.},
doi = {10.1021/acscentsci.6b00170},
journal = {ACS Central Science},
number = 9,
volume = 2,
place = {United States},
year = {Wed Aug 17 00:00:00 EDT 2016},
month = {Wed Aug 17 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A DNA-based method for rationally assembling nanoparticles into macroscopic materials
journal, August 1996

  • Mirkin, Chad A.; Letsinger, Robert L.; Mucic, Robert C.
  • Nature, Vol. 382, Issue 6592, p. 607-609
  • DOI: 10.1038/382607a0

Organization of 'nanocrystal molecules' using DNA
journal, August 1996

  • Alivisatos, A. Paul; Johnsson, Kai P.; Peng, Xiaogang
  • Nature, Vol. 382, Issue 6592
  • DOI: 10.1038/382609a0

DNA-programmable nanoparticle crystallization
journal, January 2008

  • Park, Sung Yong; Lytton-Jean, Abigail K. R.; Lee, Byeongdu
  • Nature, Vol. 451, Issue 7178, p. 553-556
  • DOI: 10.1038/nature06508

DNA-guided crystallization of colloidal nanoparticles
journal, January 2008

  • Nykypanchuk, Dmytro; Maye, Mathew M.; van der Lelie, Daniel
  • Nature, Vol. 451, Issue 7178, p. 549-552
  • DOI: 10.1038/nature06560

Nanoparticle Superlattice Engineering with DNA
journal, October 2011


DNA-nanoparticle superlattices formed from anisotropic building blocks
journal, October 2010

  • Jones, Matthew R.; Macfarlane, Robert J.; Lee, Byeongdu
  • Nature Materials, Vol. 9, Issue 11, p. 913-917
  • DOI: 10.1038/nmat2870

A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems
journal, October 2013

  • Zhang, Yugang; Lu, Fang; Yager, Kevin G.
  • Nature Nanotechnology, Vol. 8, Issue 11
  • DOI: 10.1038/nnano.2013.209

Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization
journal, May 2015

  • O’Brien, Matthew N.; Jones, Matthew R.; Lee, Byeongdu
  • Nature Materials, Vol. 14, Issue 8
  • DOI: 10.1038/nmat4293

Superlattices assembled through shape-induced directional binding
journal, April 2015

  • Lu, Fang; Yager, Kevin G.; Zhang, Yugang
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7912

Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions
journal, May 2015

  • Zhang, Yugang; Pal, Suchetan; Srinivasan, Babji
  • Nature Materials, Vol. 14, Issue 8
  • DOI: 10.1038/nmat4296

DNA-mediated nanoparticle crystallization into Wulff polyhedra
journal, November 2013

  • Auyeung, Evelyn; Li, Ting I. N. G.; Senesi, Andrew J.
  • Nature, Vol. 505, Issue 7481
  • DOI: 10.1038/nature12739

Re-entrant melting as a design principle for DNA-coated colloids
journal, April 2012

  • Angioletti-Uberti, Stefano; Mognetti, Bortolo M.; Frenkel, Daan
  • Nature Materials, Vol. 11, Issue 6
  • DOI: 10.1038/nmat3314

Building plasmonic nanostructures with DNA
journal, April 2011

  • Tan, Shawn J.; Campolongo, Michael J.; Luo, Dan
  • Nature Nanotechnology, Vol. 6, Issue 5
  • DOI: 10.1038/nnano.2011.49

Plasmonic photonic crystals realized through DNA-programmable assembly
journal, December 2014

  • Park, Daniel J.; Zhang, Chuan; Ku, Jessie C.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 4
  • DOI: 10.1073/pnas.1422649112

Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices
journal, April 2015

  • Ross, Michael B.; Ku, Jessie C.; Vaccarezza, Victoria M.
  • Nature Nanotechnology, Vol. 10, Issue 5
  • DOI: 10.1038/nnano.2015.68

Using DNA to Design Plasmonic Metamaterials with Tunable Optical Properties
journal, October 2013

  • Young, Kaylie L.; Ross, Michael B.; Blaber, Martin G.
  • Advanced Materials, Vol. 26, Issue 4
  • DOI: 10.1002/adma.201302938

Two-Dimensional DNA-Programmable Assembly of Nanoparticles at Liquid Interfaces
journal, May 2014

  • Srivastava, Sunita; Nykypanchuk, Dmytro; Fukuto, Masafumi
  • Journal of the American Chemical Society, Vol. 136, Issue 23
  • DOI: 10.1021/ja501749b

Free-standing nanoparticle superlattice sheets controlled by DNA
journal, May 2009

  • Cheng, Wenlong; Campolongo, Michael J.; Cha, Judy J.
  • Nature Materials, Vol. 8, Issue 6
  • DOI: 10.1038/nmat2440

Supercrystals of DNA-Functionalized Gold Nanoparticles: A Million-Atom Molecular Dynamics Simulation Study
journal, August 2012

  • Ngo, Van A.; Kalia, Rajiv K.; Nakano, Aiichiro
  • The Journal of Physical Chemistry C, Vol. 116, Issue 36
  • DOI: 10.1021/jp306133v

Elastic membranes of close-packed nanoparticle arrays
journal, July 2007

  • Mueggenburg, Klara E.; Lin, Xiao-Min; Goldsmith, Rodney H.
  • Nature Materials, Vol. 6, Issue 9
  • DOI: 10.1038/nmat1965

Strong Resistance to Bending Observed for Nanoparticle Membranes
journal, September 2015


High Strength, Molecularly Thin Nanoparticle Membranes
journal, December 2014


Mechanically Robust and Self-Healable Superlattice Nanocomposites by Self-Assembly of Single-Component “Sticky” Polymer-Grafted Nanoparticles
journal, May 2015

  • Williams, Gregory A.; Ishige, Ryohei; Cromwell, Olivia R.
  • Advanced Materials, Vol. 27, Issue 26
  • DOI: 10.1002/adma.201500927

A molecular view of DNA-conjugated nanoparticle association energies
journal, January 2015

  • Lequieu, Joshua P.; Hinckley, Daniel M.; de Pablo, Juan J.
  • Soft Matter, Vol. 11, Issue 10
  • DOI: 10.1039/C4SM02573C

Maximizing DNA Loading on a Range of Gold Nanoparticle Sizes
journal, December 2006

  • Hurst, Sarah J.; Lytton-Jean, Abigail K. R.; Mirkin, Chad A.
  • Analytical Chemistry, Vol. 78, Issue 24
  • DOI: 10.1021/ac0613582

Direct measurements of DNA-mediated colloidal interactions and their quantitative modeling
journal, September 2011

  • Rogers, W. B.; Crocker, J. C.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 38
  • DOI: 10.1073/pnas.1109853108

Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles
journal, August 1997


Coupling of isotropic and directional interactions and its effect on phase separation and self-assembly
journal, February 2016

  • Audus, Debra J.; Starr, Francis W.; Douglas, Jack F.
  • The Journal of Chemical Physics, Vol. 144, Issue 7
  • DOI: 10.1063/1.4941454

Modeling the Crystallization of Spherical Nucleic Acid Nanoparticle Conjugates with Molecular Dynamics Simulations
journal, April 2012

  • Li, Ting I. N. G.; Sknepnek, Rastko; Macfarlane, Robert J.
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl300679e

Thermally Active Hybridization Drives the Crystallization of DNA-Functionalized Nanoparticles
journal, May 2013

  • Li, Ting I. N. G.; Sknepnek, Rastko; Olvera de la Cruz, Monica
  • Journal of the American Chemical Society, Vol. 135, Issue 23
  • DOI: 10.1021/ja312644h

An experimentally-informed coarse-grained 3-site-per-nucleotide model of DNA: Structure, thermodynamics, and dynamics of hybridization
journal, October 2013

  • Hinckley, Daniel M.; Freeman, Gordon S.; Whitmer, Jonathan K.
  • The Journal of Chemical Physics, Vol. 139, Issue 14
  • DOI: 10.1063/1.4822042

A coarse grain model for DNA
journal, February 2007

  • Knotts, Thomas A.; Rathore, Nitin; Schwartz, David C.
  • The Journal of Chemical Physics, Vol. 126, Issue 8
  • DOI: 10.1063/1.2431804

A Mesoscale Model of DNA and Its Renaturation
journal, March 2009


Coarse-grained modeling of DNA oligomer hybridization: Length, sequence, and salt effects
journal, July 2014

  • Hinckley, Daniel M.; Lequieu, Joshua P.; de Pablo, Juan J.
  • The Journal of Chemical Physics, Vol. 141, Issue 3
  • DOI: 10.1063/1.4886336

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions
journal, October 2009

  • Thompson, Aidan P.; Plimpton, Steven J.; Mattson, William
  • The Journal of Chemical Physics, Vol. 131, Issue 15
  • DOI: 10.1063/1.3245303

A Mesoscale Model of DNA and Its Renaturation
journal, March 2009


Maximizing DNA Loading on a Range of Gold Nanoparticle Sizes
journal, December 2006

  • Hurst, Sarah J.; Lytton-Jean, Abigail K. R.; Mirkin, Chad A.
  • Analytical Chemistry, Vol. 78, Issue 24
  • DOI: 10.1021/ac0613582

Thermally Active Hybridization Drives the Crystallization of DNA-Functionalized Nanoparticles
journal, May 2013

  • Li, Ting I. N. G.; Sknepnek, Rastko; Olvera de la Cruz, Monica
  • Journal of the American Chemical Society, Vol. 135, Issue 23
  • DOI: 10.1021/ja312644h

Two-Dimensional DNA-Programmable Assembly of Nanoparticles at Liquid Interfaces
journal, May 2014

  • Srivastava, Sunita; Nykypanchuk, Dmytro; Fukuto, Masafumi
  • Journal of the American Chemical Society, Vol. 136, Issue 23
  • DOI: 10.1021/ja501749b

Modeling the Crystallization of Spherical Nucleic Acid Nanoparticle Conjugates with Molecular Dynamics Simulations
journal, April 2012

  • Li, Ting I. N. G.; Sknepnek, Rastko; Macfarlane, Robert J.
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl300679e

A DNA-based method for rationally assembling nanoparticles into macroscopic materials
journal, August 1996

  • Mirkin, Chad A.; Letsinger, Robert L.; Mucic, Robert C.
  • Nature, Vol. 382, Issue 6592, p. 607-609
  • DOI: 10.1038/382607a0

DNA-programmable nanoparticle crystallization
journal, January 2008

  • Park, Sung Yong; Lytton-Jean, Abigail K. R.; Lee, Byeongdu
  • Nature, Vol. 451, Issue 7178, p. 553-556
  • DOI: 10.1038/nature06508

DNA-mediated nanoparticle crystallization into Wulff polyhedra
journal, November 2013

  • Auyeung, Evelyn; Li, Ting I. N. G.; Senesi, Andrew J.
  • Nature, Vol. 505, Issue 7481
  • DOI: 10.1038/nature12739

Superlattices assembled through shape-induced directional binding
journal, April 2015

  • Lu, Fang; Yager, Kevin G.; Zhang, Yugang
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7912

Elastic membranes of close-packed nanoparticle arrays
journal, July 2007

  • Mueggenburg, Klara E.; Lin, Xiao-Min; Goldsmith, Rodney H.
  • Nature Materials, Vol. 6, Issue 9
  • DOI: 10.1038/nmat1965

Free-standing nanoparticle superlattice sheets controlled by DNA
journal, May 2009

  • Cheng, Wenlong; Campolongo, Michael J.; Cha, Judy J.
  • Nature Materials, Vol. 8, Issue 6
  • DOI: 10.1038/nmat2440

DNA-nanoparticle superlattices formed from anisotropic building blocks
journal, October 2010

  • Jones, Matthew R.; Macfarlane, Robert J.; Lee, Byeongdu
  • Nature Materials, Vol. 9, Issue 11, p. 913-917
  • DOI: 10.1038/nmat2870

Re-entrant melting as a design principle for DNA-coated colloids
journal, April 2012

  • Angioletti-Uberti, Stefano; Mognetti, Bortolo M.; Frenkel, Daan
  • Nature Materials, Vol. 11, Issue 6
  • DOI: 10.1038/nmat3314

Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization
journal, May 2015

  • O’Brien, Matthew N.; Jones, Matthew R.; Lee, Byeongdu
  • Nature Materials, Vol. 14, Issue 8
  • DOI: 10.1038/nmat4293

Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions
journal, May 2015

  • Zhang, Yugang; Pal, Suchetan; Srinivasan, Babji
  • Nature Materials, Vol. 14, Issue 8
  • DOI: 10.1038/nmat4296

A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems
journal, October 2013

  • Zhang, Yugang; Lu, Fang; Yager, Kevin G.
  • Nature Nanotechnology, Vol. 8, Issue 11
  • DOI: 10.1038/nnano.2013.209

Strain-induced room-temperature ferroelectricity in SrTiO3 membranes
journal, June 2020


General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions
journal, October 2009

  • Thompson, Aidan P.; Plimpton, Steven J.; Mattson, William
  • The Journal of Chemical Physics, Vol. 131, Issue 15
  • DOI: 10.1063/1.3245303

Coarse-grained modeling of DNA oligomer hybridization: Length, sequence, and salt effects
journal, July 2014

  • Hinckley, Daniel M.; Lequieu, Joshua P.; de Pablo, Juan J.
  • The Journal of Chemical Physics, Vol. 141, Issue 3
  • DOI: 10.1063/1.4886336

Coupling of isotropic and directional interactions and its effect on phase separation and self-assembly
journal, February 2016

  • Audus, Debra J.; Starr, Francis W.; Douglas, Jack F.
  • The Journal of Chemical Physics, Vol. 144, Issue 7
  • DOI: 10.1063/1.4941454

Direct measurements of DNA-mediated colloidal interactions and their quantitative modeling
journal, September 2011

  • Rogers, W. B.; Crocker, J. C.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 38
  • DOI: 10.1073/pnas.1109853108

Plasmonic photonic crystals realized through DNA-programmable assembly
journal, December 2014

  • Park, Daniel J.; Zhang, Chuan; Ku, Jessie C.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 4
  • DOI: 10.1073/pnas.1422649112

Viscoplastic and Granular Behavior in Films of Colloidal Nanocrystals
journal, January 2007


Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles
journal, August 1997


Works referencing / citing this record:

Ideal isotropic auxetic networks from random networks
journal, January 2019

  • Reid, Daniel R.; Pashine, Nidhi; Bowen, Alec S.
  • Soft Matter, Vol. 15, Issue 40
  • DOI: 10.1039/c9sm01241a

1CPN: A coarse-grained multi-scale model of chromatin
journal, June 2019

  • Lequieu, Joshua; Córdoba, Andrés; Moller, Joshua
  • The Journal of Chemical Physics, Vol. 150, Issue 21
  • DOI: 10.1063/1.5092976

Bridging functional nanocomposites to robust macroscale devices
journal, June 2019


Ideal isotropic auxetic networks from random networks
preprint, January 2019