skip to main content

DOE PAGESDOE PAGES

Title: Energy and fuels from electrochemical interfaces

Advances in electrocatalysis at solid–liquid interfaces are vital for driving the technological innovations that are needed to deliver reliable, affordable and environmentally friendly energy. Here, in this paper, we highlight the key achievements in the development of new materials for efficient hydrogen and oxygen production in electrolysers and, in reverse, their use in fuel cells. A key issue addressed here is the degree to which the fundamental understanding of the synergy between covalent and non-covalent interactions can form the basis for any predictive ability in tailor-making real-world catalysts. Common descriptors such as the substrate–hydroxide binding energy and the interactions in the double layer between hydroxide-oxides and H---OH are found to control individual parts of the hydrogen and oxygen electrochemistry that govern the efficiency of water-based energy conversion and storage systems. Lastly, links between aqueous- and organic-based environments are also established, encouraging the 'fuel cell' and 'battery' communities to move forward together.
Authors:
 [1] ;  [1] ;  [1] ;  [1]
  1. Argonne National Lab. (ANL), Lemont, IL (United States). Materials Science Division
Publication Date:
Grant/Contract Number:
AC02-06CH11357
Type:
Accepted Manuscript
Journal Name:
Nature Materials
Additional Journal Information:
Journal Volume: 16; Journal Issue: 1; Journal ID: ISSN 1476-1122
Publisher:
Nature Publishing Group
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Fuel Cell Technologies Office (EE-3F)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 25 ENERGY STORAGE; 36 MATERIALS SCIENCE
OSTI Identifier:
1352573

Stamenkovic, Vojislav R., Strmcnik, Dusan, Lopes, Pietro P., and Markovic, Nenad M.. Energy and fuels from electrochemical interfaces. United States: N. p., Web. doi:10.1038/NMAT4738.
Stamenkovic, Vojislav R., Strmcnik, Dusan, Lopes, Pietro P., & Markovic, Nenad M.. Energy and fuels from electrochemical interfaces. United States. doi:10.1038/NMAT4738.
Stamenkovic, Vojislav R., Strmcnik, Dusan, Lopes, Pietro P., and Markovic, Nenad M.. 2016. "Energy and fuels from electrochemical interfaces". United States. doi:10.1038/NMAT4738. https://www.osti.gov/servlets/purl/1352573.
@article{osti_1352573,
title = {Energy and fuels from electrochemical interfaces},
author = {Stamenkovic, Vojislav R. and Strmcnik, Dusan and Lopes, Pietro P. and Markovic, Nenad M.},
abstractNote = {Advances in electrocatalysis at solid–liquid interfaces are vital for driving the technological innovations that are needed to deliver reliable, affordable and environmentally friendly energy. Here, in this paper, we highlight the key achievements in the development of new materials for efficient hydrogen and oxygen production in electrolysers and, in reverse, their use in fuel cells. A key issue addressed here is the degree to which the fundamental understanding of the synergy between covalent and non-covalent interactions can form the basis for any predictive ability in tailor-making real-world catalysts. Common descriptors such as the substrate–hydroxide binding energy and the interactions in the double layer between hydroxide-oxides and H---OH are found to control individual parts of the hydrogen and oxygen electrochemistry that govern the efficiency of water-based energy conversion and storage systems. Lastly, links between aqueous- and organic-based environments are also established, encouraging the 'fuel cell' and 'battery' communities to move forward together.},
doi = {10.1038/NMAT4738},
journal = {Nature Materials},
number = 1,
volume = 16,
place = {United States},
year = {2016},
month = {12}
}

Works referenced in this record:

Lithium Batteries and Cathode Materials
journal, October 2004
  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
journal, October 2006
  • Greeley, Jeff; Jaramillo, Thomas F.; Bonde, Jacob
  • Nature Materials, Vol. 5, Issue 11, p. 909-913
  • DOI: 10.1038/nmat1752

Correlation Between Surface Chemistry and Electrocatalytic Properties of Monodisperse PtxNi1-x Nanoparticles
journal, November 2010
  • Wang, Chao; Chi, Miaofang; Wang, Guofeng
  • Advanced Functional Materials, Vol. 21, Issue 1, p. 147-152
  • DOI: 10.1002/adfm.201001138

Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates
journal, March 2005
  • Zhang, Junliang; Vukmirovic, Miomir B.; Xu, Ye
  • Angewandte Chemie International Edition, Vol. 44, Issue 14, p. 2132-2135
  • DOI: 10.1002/anie.200462335

Electrolysis of water on (oxidized) metal surfaces
journal, December 2005

Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability
journal, January 2007
  • Stamenkovic, V. R.; Fowler, B.; Mun, B. S.
  • Science, Vol. 315, Issue 5811, p. 493-497
  • DOI: 10.1126/science.1135941

A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
journal, September 2010

Efficient Oxygen Reduction Fuel Cell Electrocatalysis on Voltammetrically Dealloyed Pt–Cu–Co Nanoparticles
journal, December 2007
  • Srivastava, Ratndeep; Mani, Prasanna; Hahn, Nathan
  • Angewandte Chemie International Edition, Vol. 46, Issue 47, p. 8988-8991
  • DOI: 10.1002/anie.200703331

Anion exchange membranes: Current status and moving forward
journal, October 2013
  • Hickner, Michael A.; Herring, Andrew M.; Coughlin, E. Bryan
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 51, Issue 24, p. 1727-1735
  • DOI: 10.1002/polb.23395

A Polymer Electrolyte-Based Rechargeable Lithium/Oxygen Battery
journal, January 1996
  • Abraham, K. M.; Jiang, Z.
  • Journal of The Electrochemical Society, Vol. 143, Issue 1, p. 1-5
  • DOI: 10.1149/1.1836378

Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces
journal, February 2007
  • Stamenkovic, Vojislav R.; Mun, Bongjin Simon; Arenz, Matthias
  • Nature Materials, Vol. 6, Issue 3, p. 241-247
  • DOI: 10.1038/nmat1840

Towards the computational design of solid catalysts
journal, April 2009
  • Nørskov, J.; Bligaard, T.; Rossmeisl, J.
  • Nature Chemistry, Vol. 1, Issue 1, p. 37-46
  • DOI: 10.1038/nchem.121

Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries
journal, June 2011
  • Suntivich, Jin; Gasteiger, Hubert A.; Yabuuchi, Naoaki
  • Nature Chemistry, Vol. 3, Issue 7, p. 546-550
  • DOI: 10.1038/nchem.1069

Electrocatalysis in the anodic evolution of oxygen and chlorine
journal, November 1984

Platinum Monolayer Fuel Cell Electrocatalysts
journal, November 2007

Alloys of platinum and early transition metals as oxygen reduction electrocatalysts
journal, September 2009
  • Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.
  • Nature Chemistry, Vol. 1, Issue 7, p. 552-556
  • DOI: 10.1038/nchem.367

Issues and challenges facing rechargeable lithium batteries
journal, November 2001
  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

A lithium–oxygen battery based on lithium superoxide
journal, January 2016
  • Lu, Jun; Jung Lee, Yun; Luo, Xiangyi
  • Nature, Vol. 529, Issue 7586, p. 377-382
  • DOI: 10.1038/nature16484

Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs
journal, March 2005
  • Gasteiger, Hubert A.; Kocha, Shyam S.; Sompalli, Bhaskar
  • Applied Catalysis B: Environmental, Vol. 56, Issue 1-2, p. 9-35
  • DOI: 10.1016/j.apcatb.2004.06.021

The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen
journal, January 1958
  • Parsons, Roger
  • Transactions of the Faraday Society, Vol. 54, p. 1053-1063
  • DOI: 10.1039/tf9585401053

Anion-exchange membranes in electrochemical energy systems
journal, January 2014
  • Varcoe, John R.; Atanassov, Plamen; Dekel, Dario R.
  • Energy & Environmental Science, Vol. 7, Issue 10, p. 3135-3191
  • DOI: 10.1039/C4EE01303D

Solar Water Splitting Cells
journal, November 2010
  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H
journal, August 2002

Materials for fuel-cell technologies
journal, November 2001
  • Steele, Brian C. H.; Heinzel, Angelika
  • Nature, Vol. 414, Issue 6861, p. 345-352
  • DOI: 10.1038/35104620

Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis
journal, October 2012
  • Kibsgaard, Jakob; Chen, Zhebo; Reinecke, Benjamin N.
  • Nature Materials, Vol. 11, Issue 11, p. 963-969
  • DOI: 10.1038/nmat3439

Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes
journal, August 2002

Just a Dream—or Future Reality?
journal, April 2009

Electrocatalytic properties of transition metal oxides for oxygen evolution reaction
journal, May 1986

Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuelcells
journal, January 2011
  • Jaouen, Frédéric; Proietti, Eric; Lefèvre, Michel
  • Energy Environ. Sci., Vol. 4, Issue 1, p. 114-130
  • DOI: 10.1039/C0EE00011F

Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells
journal, April 2009
  • Lefèvre, Michel; Proietti, Eric; Jaouen, Frédéric
  • Science, Vol. 324, Issue 5923, p. 71-74
  • DOI: 10.1126/science.1170051

Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts
journal, July 2007
  • Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.
  • Science, Vol. 317, Issue 5834, p. 100-102
  • DOI: 10.1126/science.1141483

A comprehensive review on PEM water electrolysis
journal, April 2013
  • Carmo, Marcelo; Fritz, David L.; Mergel, Jürgen
  • International Journal of Hydrogen Energy, Vol. 38, Issue 12, p. 4901-4934
  • DOI: 10.1016/j.ijhydene.2013.01.151