skip to main content

DOE PAGESDOE PAGES

Title: Electronic and magnetic properties of Ti4O7 predicted by self-interaction-corrected density functional theory

Understanding electronic properties of substoichiometric phases of titanium oxide such as Magneli phase Ti4O7 is crucial in designing and modeling resistive switching devices. Here we present our study on Magneli phase Ti4O7 together with rutile TiO2 and Ti2O3 using density functional theory methods with atomic-orbital-based self-interaction correction (ASIC). We predict a new antiferromagnetic (AF) ground state in the low temperature (LT) phase, and we explain energy difference with a competing AF state using a Heisenberg model. The predicted energy ordering of these states in the LT phase is calculated to be robust in a wide range of modeled isotropic strain. We have also investigated the dependence of the electronic structures of the Ti-O phases on stoichiometry. The splitting of titanium t2g orbitals is enhanced with increasing oxygen deficiency as Ti-O is reduced. Furthermore, the electronic properties of all these phases can be reasonably well described by applying ASIC with a "standard" value for transition metal oxides of the empirical parameter alpha of 0.5 representing the magnitude of the applied self-interaction correction.
Authors:
 [1] ;  [2] ;  [1] ;  [3]
  1. Argonne National Lab. (ANL), Lemont, IL (United States)
  2. Trinity College, Dublin (Ireland)
  3. Argonne National Lab. (ANL), Lemont, IL (United States); Northwestern Univ., Evanston, IL (United States)
Publication Date:
Grant/Contract Number:
AC02-06CH11357
Type:
Accepted Manuscript
Journal Name:
Physical Review. B, Condensed Matter and Materials Physics
Additional Journal Information:
Journal Volume: 91; Journal Issue: 11; Journal ID: ISSN 1098-0121
Publisher:
American Physical Society (APS)
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); Materials Sciences and Engineering Division; Argonne National Laboratory, Argonne Leadership Computing Facility
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
OSTI Identifier:
1352512
Alternate Identifier(s):
OSTI ID: 1181001