DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix

Abstract

Significance Lithium metal anode holds great promises for next-generation high-energy lithium battery systems. This work introduces an electrolyte-proof design of three-dimensional lithium metal anode where most of the lithium domains are embedded in a lithium-ion conductive matrix. In this architecture, the lithium-ion conductive matrix can isolate the embedded lithium domains from liquid electrolyte and thus prevent severe initial side reactions, while the matrix can simultaneously transport lithium ion and maintain the electrochemical activity of the embedded lithium. The design principle enables highly stable, high-power, and safe lithium metal anodes with minimal side reactions and negligible volume variation during cycling, which paves the way for viable lithium metal batteries in the future.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [2]
  1. Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305,
  2. Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305,, Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1351924
Grant/Contract Number:  
EE0006828
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America Journal Volume: 114 Journal Issue: 18; Journal ID: ISSN 0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Country of Publication:
United States
Language:
English

Citation Formats

Lin, Dingchang, Zhao, Jie, Sun, Jie, Yao, Hongbin, Liu, Yayuan, Yan, Kai, and Cui, Yi. Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix. United States: N. p., 2017. Web. doi:10.1073/pnas.1619489114.
Lin, Dingchang, Zhao, Jie, Sun, Jie, Yao, Hongbin, Liu, Yayuan, Yan, Kai, & Cui, Yi. Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix. United States. https://doi.org/10.1073/pnas.1619489114
Lin, Dingchang, Zhao, Jie, Sun, Jie, Yao, Hongbin, Liu, Yayuan, Yan, Kai, and Cui, Yi. Mon . "Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix". United States. https://doi.org/10.1073/pnas.1619489114.
@article{osti_1351924,
title = {Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix},
author = {Lin, Dingchang and Zhao, Jie and Sun, Jie and Yao, Hongbin and Liu, Yayuan and Yan, Kai and Cui, Yi},
abstractNote = {Significance Lithium metal anode holds great promises for next-generation high-energy lithium battery systems. This work introduces an electrolyte-proof design of three-dimensional lithium metal anode where most of the lithium domains are embedded in a lithium-ion conductive matrix. In this architecture, the lithium-ion conductive matrix can isolate the embedded lithium domains from liquid electrolyte and thus prevent severe initial side reactions, while the matrix can simultaneously transport lithium ion and maintain the electrochemical activity of the embedded lithium. The design principle enables highly stable, high-power, and safe lithium metal anodes with minimal side reactions and negligible volume variation during cycling, which paves the way for viable lithium metal batteries in the future.},
doi = {10.1073/pnas.1619489114},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 18,
volume = 114,
place = {United States},
year = {Mon Apr 17 00:00:00 EDT 2017},
month = {Mon Apr 17 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1073/pnas.1619489114

Citation Metrics:
Cited by: 269 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries
journal, May 2010

  • Bhattacharyya, Rangeet; Key, Baris; Chen, Hailong
  • Nature Materials, Vol. 9, Issue 6
  • DOI: 10.1038/nmat2764

All-Integrated Bifunctional Separator for Li Dendrite Detection via Novel Solution Synthesis of a Thermostable Polyimide Separator
journal, August 2016

  • Lin, Dingchang; Zhuo, Denys; Liu, Yayuan
  • Journal of the American Chemical Society, Vol. 138, Issue 34
  • DOI: 10.1021/jacs.6b06324

The electrochemical behaviour of 1,3-dioxolane—LiClO4 solutions—I. Uncontaminated solutions
journal, March 1990


High-performance lithium-ion anodes using a hierarchical bottom-up approach
journal, March 2010

  • Magasinski, A.; Dixon, P.; Hertzberg, B.
  • Nature Materials, Vol. 9, Issue 4, p. 353-358
  • DOI: 10.1038/nmat2725

High-capacity battery cathode prelithiation to offset initial lithium loss
journal, January 2016


High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

A Comparative First-Principles Study of the Structure, Energetics, and Properties of Li–M (M = Si, Ge, Sn) Alloys
journal, September 2011

  • Chou, Chia-Yun; Kim, Hyunwoo; Hwang, Gyeong S.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 40
  • DOI: 10.1021/jp205484v

A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

Metallurgically lithiated SiO x anode with high capacity and ambient air compatibility
journal, June 2016

  • Zhao, Jie; Lee, Hyun-Wook; Sun, Jie
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 27
  • DOI: 10.1073/pnas.1603810113

Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries
journal, March 2013

  • Bouchet, Renaud; Maria, Sébastien; Meziane, Rachid
  • Nature Materials, Vol. 12, Issue 5
  • DOI: 10.1038/nmat3602

Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition
journal, February 2012


7Li MRI of Li batteries reveals location of microstructural lithium
journal, February 2012

  • Chandrashekar, S.; Trease, Nicole M.; Chang, Hee Jung
  • Nature Materials, Vol. 11, Issue 4
  • DOI: 10.1038/nmat3246

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Small particle size multiphase Li-alloy anodes for lithium-ionbatteries
journal, September 1996


Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


In Situ Chemical Synthesis of Lithium Fluoride/Metal Nanocomposite for High Capacity Prelithiation of Cathodes
journal, January 2016


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control
journal, March 2012

  • Wu, Hui; Chan, Gerentt; Choi, Jang Wook
  • Nature Nanotechnology, Vol. 7, Issue 5
  • DOI: 10.1038/nnano.2012.35

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”
journal, January 2011

  • Buschmann, Henrik; Dölle, Janis; Berendts, Stefan
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 43
  • DOI: 10.1039/c1cp22108f

Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie International Edition, Vol. 46, Issue 41, p. 7778-7781
  • DOI: 10.1002/anie.200701144

Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode
journal, January 2015

  • Bieker, Georg; Winter, Martin; Bieker, Peter
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 14
  • DOI: 10.1039/C4CP05865H

Characterization of Lithium Electrode in Lithium Imides/Ethylene Carbonate and Cyclic Ether Electrolytes
journal, January 2004

  • Ota, Hitoshi; Sakata, Yuuichi; Wang, Xianming
  • Journal of The Electrochemical Society, Vol. 151, Issue 3
  • DOI: 10.1149/1.1644137

The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries
journal, January 2012

  • Stone, G. M.; Mullin, S. A.; Teran, A. A.
  • Journal of The Electrochemical Society, Vol. 159, Issue 3
  • DOI: 10.1149/2.030203jes

Nanostructured tin for use as a negative electrode material in Li-ion batteries
journal, September 1999


Effect of Electrolyte Composition on Lithium Dendrite Growth
journal, January 2008

  • Crowther, Owen; West, Alan C.
  • Journal of The Electrochemical Society, Vol. 155, Issue 11
  • DOI: 10.1149/1.2969424

Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates
journal, August 2014


Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode
journal, March 2016

  • Liu, Yayuan; Lin, Dingchang; Liang, Zheng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10992

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating
journal, February 2016

  • Liang, Zheng; Lin, Dingchang; Zhao, Jie
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 11
  • DOI: 10.1073/pnas.1518188113

A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte
journal, August 1998


Dry-air-stable lithium silicide–lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents
journal, October 2014

  • Zhao, Jie; Lu, Zhenda; Liu, Nian
  • Nature Communications, Vol. 5, Article No. 5088
  • DOI: 10.1038/ncomms6088

Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes
journal, August 2015

  • Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9058

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
journal, February 2016

  • Yan, Kai; Lu, Zhenda; Lee, Hyun-Wook
  • Nature Energy, Vol. 1, Issue 3, Article No. 16010
  • DOI: 10.1038/nenergy.2016.10

A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
journal, February 2014


Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles
journal, December 2015

  • Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10101

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009

  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460

A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries
journal, January 2015

  • Lin, Dingchang; Lu, Zhenda; Hsu, Po-Chun
  • Energy & Environmental Science, Vol. 8, Issue 8
  • DOI: 10.1039/C5EE01363A

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

Thin-film lithium and lithium-ion batteries
journal, November 2000


High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362