DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Genome in Action: Identifying the Performance Limits of Physical Hydrogen Storage

Abstract

The Materials Genome is in action: the molecular codes for millions of materials have been sequenced, predictive models have been developed, and now the challenge of hydrogen storage is targeted. Renewably generated hydrogen is an attractive transportation fuel with zero carbon emissions, but its storage remains a significant challenge. Nanoporous adsorbents have shown promising physical adsorption of hydrogen approaching targeted capacities, but the scope of studies has remained limited. Here the Nanoporous Materials Genome, containing over 850 000 materials, is analyzed with a variety of computational tools to explore the limits of hydrogen storage. Optimal features that maximize net capacity at room temperature include pore sizes of around 6 Å and void fractions of 0.1, while at cryogenic temperatures pore sizes of 10 Å and void fractions of 0.5 are optimal. Our top candidates are found to be commercially attractive as "cryo-adsorbents", with promising storage capacities at 77 K and 100 bar with 30% enhancement to 40 g/L, a promising alternative to liquefaction at 20 K and compression at 700 bar.

Authors:
ORCiD logo [1]; ;  [2];  [2]; ;  [1];  [3];  [1]; ORCiD logo [4];  [5]; ORCiD logo [6]
  1. Future Industries, Commonwealth Scientific and Industrial Research Organisation, Private Bag 10, Clayton Soutth MDC, Victoria 3169, Australia
  2. Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro Yuseong-gu, Daejeon, 305-701, Korea
  3. Power & Energy Systems, Maritime Division, Defence Science and Technology Group, Department of Defence, 506 Lorimer Street, Fishermans Bend, Victoria 3207, Australia
  4. Future Industries, Commonwealth Scientific and Industrial Research Organisation, Private Bag 10, Clayton Soutth MDC, Victoria 3169, Australia, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia, Latrobe Institute for Molecular Science, Bundoora, Victoria 3046, Australia, School of Chemical and Physical Sciences, Flinders University, Bedford Park, South Australia 5042, Australia
  5. Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8139, United States
  6. Laboratory of Molecular Simulation, Institut des Sciences et Ingénierie Chimiques, Valais, Rue de l’Industrie 17, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1950 Sion, Switzerland
Publication Date:
Research Org.:
Univ. of California, Berkeley, CA (United States); Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1347042
Alternate Identifier(s):
OSTI ID: 1351897; OSTI ID: 1409434
Grant/Contract Number:  
SC0001015; AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Name: Chemistry of Materials Journal Volume: 29 Journal Issue: 7; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Thornton, Aaron W., Simon, Cory M., Kim, Jihan, Kwon, Ohmin, Deeg, Kathryn S., Konstas, Kristina, Pas, Steven J., Hill, Matthew R., Winkler, David A., Haranczyk, Maciej, and Smit, Berend. Materials Genome in Action: Identifying the Performance Limits of Physical Hydrogen Storage. United States: N. p., 2017. Web. doi:10.1021/acs.chemmater.6b04933.
Thornton, Aaron W., Simon, Cory M., Kim, Jihan, Kwon, Ohmin, Deeg, Kathryn S., Konstas, Kristina, Pas, Steven J., Hill, Matthew R., Winkler, David A., Haranczyk, Maciej, & Smit, Berend. Materials Genome in Action: Identifying the Performance Limits of Physical Hydrogen Storage. United States. https://doi.org/10.1021/acs.chemmater.6b04933
Thornton, Aaron W., Simon, Cory M., Kim, Jihan, Kwon, Ohmin, Deeg, Kathryn S., Konstas, Kristina, Pas, Steven J., Hill, Matthew R., Winkler, David A., Haranczyk, Maciej, and Smit, Berend. Thu . "Materials Genome in Action: Identifying the Performance Limits of Physical Hydrogen Storage". United States. https://doi.org/10.1021/acs.chemmater.6b04933.
@article{osti_1347042,
title = {Materials Genome in Action: Identifying the Performance Limits of Physical Hydrogen Storage},
author = {Thornton, Aaron W. and Simon, Cory M. and Kim, Jihan and Kwon, Ohmin and Deeg, Kathryn S. and Konstas, Kristina and Pas, Steven J. and Hill, Matthew R. and Winkler, David A. and Haranczyk, Maciej and Smit, Berend},
abstractNote = {The Materials Genome is in action: the molecular codes for millions of materials have been sequenced, predictive models have been developed, and now the challenge of hydrogen storage is targeted. Renewably generated hydrogen is an attractive transportation fuel with zero carbon emissions, but its storage remains a significant challenge. Nanoporous adsorbents have shown promising physical adsorption of hydrogen approaching targeted capacities, but the scope of studies has remained limited. Here the Nanoporous Materials Genome, containing over 850 000 materials, is analyzed with a variety of computational tools to explore the limits of hydrogen storage. Optimal features that maximize net capacity at room temperature include pore sizes of around 6 Å and void fractions of 0.1, while at cryogenic temperatures pore sizes of 10 Å and void fractions of 0.5 are optimal. Our top candidates are found to be commercially attractive as "cryo-adsorbents", with promising storage capacities at 77 K and 100 bar with 30% enhancement to 40 g/L, a promising alternative to liquefaction at 20 K and compression at 700 bar.},
doi = {10.1021/acs.chemmater.6b04933},
journal = {Chemistry of Materials},
number = 7,
volume = 29,
place = {United States},
year = {Thu Mar 16 00:00:00 EDT 2017},
month = {Thu Mar 16 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acs.chemmater.6b04933

Citation Metrics:
Cited by: 138 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Fuel cell electric vehicles and hydrogen infrastructure: status 2012
journal, January 2012

  • Eberle, Ulrich; Müller, Bernd; von Helmolt, Rittmar
  • Energy & Environmental Science, Vol. 5, Issue 10
  • DOI: 10.1039/c2ee22596d

In silico screening of carbon-capture materials
journal, May 2012

  • Lin, Li-Chiang; Berger, Adam H.; Martin, Richard L.
  • Nature Materials, Vol. 11, Issue 7
  • DOI: 10.1038/nmat3336

Porosity in metal–organic framework glasses
journal, January 2016

  • Thornton, A. W.; Jelfs, K. E.; Konstas, K.
  • Chemical Communications, Vol. 52, Issue 19
  • DOI: 10.1039/C5CC10072K

Hydrogen Storage in Metal–Organic Frameworks
journal, September 2011

  • Suh, Myunghyun Paik; Park, Hye Jeong; Prasad, Thazhe Kootteri
  • Chemical Reviews, Vol. 112, Issue 2, p. 782-835
  • DOI: 10.1021/cr200274s

What Are the Best Materials To Separate a Xenon/Krypton Mixture?
journal, June 2015


Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art
journal, June 2015


High capacity hydrogenstorage materials: attributes for automotive applications and techniques for materials discovery
journal, January 2010

  • Yang, Jun; Sudik, Andrea; Wolverton, Christopher
  • Chem. Soc. Rev., Vol. 39, Issue 2
  • DOI: 10.1039/B802882F

UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
journal, December 1992

  • Rappe, A. K.; Casewit, C. J.; Colwell, K. S.
  • Journal of the American Chemical Society, Vol. 114, Issue 25, p. 10024-10035
  • DOI: 10.1021/ja00051a040

The materials genome in action: identifying the performance limits for methane storage
journal, January 2015

  • Simon, Cory M.; Kim, Jihan; Gomez-Gualdron, Diego A.
  • Energy & Environmental Science, Vol. 8, Issue 4
  • DOI: 10.1039/C4EE03515A

Development of Composite Inorganic Building Blocks for MOFs
journal, February 2012

  • Zheng, Shou-Tian; Wu, Tao; Chou, Chengtsung
  • Journal of the American Chemical Society, Vol. 134, Issue 10
  • DOI: 10.1021/ja2118255

Thermal and mechanical stability of zeolitic imidazolate frameworks polymorphs
journal, December 2014

  • Bouëssel du Bourg, Lila; Ortiz, Aurélie U.; Boutin, Anne
  • APL Materials, Vol. 2, Issue 12
  • DOI: 10.1063/1.4904818

Increasing the Stability of Metal-Organic Frameworks
journal, September 2014

  • Bosch, Mathieu; Zhang, Muwei; Zhou, Hong-Cai
  • Advances in Chemistry, Vol. 2014
  • DOI: 10.1155/2014/182327

The importance of charge–quadrupole interactions for H 2 adsorption and diffusion in CuBTC
journal, January 2009


Ultrahigh Porosity in Metal-Organic Frameworks
journal, July 2010


Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO 2 Capture
journal, August 2014

  • Fernandez, Michael; Boyd, Peter G.; Daff, Thomas D.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 17
  • DOI: 10.1021/jz501331m

An Isoreticular Series of Metal-Organic Frameworks with Dendritic Hexacarboxylate Ligands and Exceptionally High Gas-Uptake Capacity
journal, June 2010

  • Yuan, Daqiang; Zhao, Dan; Sun, Daofeng
  • Angewandte Chemie International Edition, Vol. 49, Issue 31, p. 5357-5361
  • DOI: 10.1002/anie.201001009

Structure–property relationships of porous materials for carbon dioxide separation and capture
journal, January 2012

  • Wilmer, Christopher E.; Farha, Omar K.; Bae, Youn-Sang
  • Energy & Environmental Science, Vol. 5, Issue 12, p. 9849-9856
  • DOI: 10.1039/c2ee23201d

High-Throughput Screening of Metal–Organic Frameworks for Hydrogen Storage at Cryogenic Temperature
journal, November 2016

  • Bobbitt, N. Scott; Chen, Jiayi; Snurr, Randall Q.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 48
  • DOI: 10.1021/acs.jpcc.6b08729

Techno-economic Analysis of Metal–Organic Frameworks for Hydrogen and Natural Gas Storage
journal, January 2017


Hydrogen Storage in Metal-Organic Frameworks
journal, May 2010


Large-Scale Quantitative Structure–Property Relationship (QSPR) Analysis of Methane Storage in Metal–Organic Frameworks
journal, April 2013

  • Fernandez, Michael; Woo, Tom K.; Wilmer, Christopher E.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 15
  • DOI: 10.1021/jp4006422

Small-Molecule Adsorption in Open-Site Metal–Organic Frameworks: A Systematic Density Functional Theory Study for Rational Design
journal, January 2015

  • Lee, Kyuho; Howe, Joshua D.; Lin, Li-Chiang
  • Chemistry of Materials, Vol. 27, Issue 3, p. 668-678
  • DOI: 10.1021/cm502760q

In silico prediction of MOFs with high deliverable capacity or internal surface area
journal, January 2015

  • Bao, Yi; Martin, Richard L.; Haranczyk, Maciej
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 18
  • DOI: 10.1039/C5CP00002E

Computation-Ready, Experimental Metal–Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals
journal, October 2014

  • Chung, Yongchul G.; Camp, Jeffrey; Haranczyk, Maciej
  • Chemistry of Materials, Vol. 26, Issue 21
  • DOI: 10.1021/cm502594j

The Hydrogen Economy
journal, December 2004

  • Crabtree, George W.; Dresselhaus, Mildred S.; Buchanan, Michelle V.
  • Physics Today, Vol. 57, Issue 12
  • DOI: 10.1063/1.1878333

Zeolite screening for the separation of gas mixtures containing SO 2 , CO 2 and CO
journal, January 2014

  • Matito-Martos, I.; Martin-Calvo, A.; Gutiérrez-Sevillano, J. J.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 37
  • DOI: 10.1039/C4CP00109E

Hydrogen storage in metal–organic frameworks
journal, January 2009

  • Murray, Leslie J.; Dincă, Mircea; Long, Jeffrey R.
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1294-1314
  • DOI: 10.1039/b802256a

The current status of hydrogen storage in metal–organic frameworks—updated
journal, January 2011

  • Sculley, Julian; Yuan, Daqiang; Zhou, Hong-Cai
  • Energy & Environmental Science, Vol. 4, Issue 8
  • DOI: 10.1039/c1ee01240a

Exceptional chemical and thermal stability of zeolitic imidazolate frameworks
journal, June 2006

  • Park, K. S.; Ni, Z.; Cote, A. P.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 27, p. 10186-10191
  • DOI: 10.1073/pnas.0602439103

Methane storage capabilities of diamond analogues
journal, January 2013

  • Haranczyk, Maciej; Lin, Li-Chiang; Lee, Kyuho
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 48
  • DOI: 10.1039/c3cp53814a

Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces
journal, January 2012

  • Epa, V. Chandana; Yang, Jing; Mei, Ying
  • Journal of Materials Chemistry, Vol. 22, Issue 39
  • DOI: 10.1039/c2jm34782b

Similarity-Driven Discovery of Zeolite Materials for Adsorption-Based Separations
journal, August 2012

  • Martin, Richard L.; Willems, Thomas F.; Lin, Li-Chiang
  • ChemPhysChem, Vol. 13, Issue 16
  • DOI: 10.1002/cphc.201200554

Force-Field Development from Electronic Structure Calculations with Periodic Boundary Conditions: Applications to Gaseous Adsorption and Transport in Metal–Organic Frameworks
journal, March 2014

  • Lin, Li-Chiang; Lee, Kyuho; Gagliardi, Laura
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 4
  • DOI: 10.1021/ct500094w

Status of hydrogen fuel cell electric buses worldwide
journal, December 2014


Structure-activity relationships derived by machine learning: the use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming.
journal, January 1996

  • King, R. D.; Muggleton, S. H.; Srinivasan, A.
  • Proceedings of the National Academy of Sciences, Vol. 93, Issue 1
  • DOI: 10.1073/pnas.93.1.438

Simulation and modelling of MOFs for hydrogen storage
journal, January 2015


Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system
journal, January 2010


Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials
journal, February 2012


Dynamic Photo-Switching in Metal-Organic Frameworks as a Route to Low-Energy Carbon Dioxide Capture and Release
journal, February 2013

  • Lyndon, Richelle; Konstas, Kristina; Ladewig, Bradley P.
  • Angewandte Chemie International Edition, Vol. 52, Issue 13
  • DOI: 10.1002/anie.201206359

Lithiated Porous Aromatic Frameworks with Exceptional Gas Storage Capacity
journal, June 2012

  • Konstas, Kristina; Taylor, James W.; Thornton, Aaron W.
  • Angewandte Chemie International Edition, Vol. 51, Issue 27
  • DOI: 10.1002/anie.201201381

Photoelectrochemical water splitting
journal, January 2015


Screened Electrostatic Interactions in Molecular Mechanics
journal, September 2014

  • Wang, Bo; Truhlar, Donald G.
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 10
  • DOI: 10.1021/ct5005142

Optimizing nanoporous materials for gas storage
journal, January 2014

  • Simon, Cory M.; Kim, Jihan; Lin, Li-Chiang
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 12
  • DOI: 10.1039/c3cp55039g

Evaluating metal–organic frameworks for natural gas storage
journal, January 2014

  • Mason, Jarad A.; Veenstra, Mike; Long, Jeffrey R.
  • Chemical Science, Vol. 5, Issue 1, p. 32-51
  • DOI: 10.1039/C3SC52633J

Effects of Surface Area, Free Volume, and Heat of Adsorption on Hydrogen Uptake in Metal−Organic Frameworks
journal, April 2006

  • Frost, Houston; Düren, Tina; Snurr, Randall Q.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 19
  • DOI: 10.1021/jp060433+

Highly porous and robust scandium-based metal–organic frameworks for hydrogen storage
journal, January 2011

  • Ibarra, Ilich A.; Yang, Sihai; Lin, Xiang
  • Chemical Communications, Vol. 47, Issue 29
  • DOI: 10.1039/c1cc11168j

High-throughput computational screening of metal–organic frameworks
journal, January 2014

  • Colón, Yamil J.; Snurr, Randall Q.
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00070F

In Silico Design of Three-Dimensional Porous Covalent Organic Frameworks via Known Synthesis Routes and Commercially Available Species
journal, October 2014

  • Martin, Richard L.; Simon, Cory M.; Medasani, Bharat
  • The Journal of Physical Chemistry C, Vol. 118, Issue 41
  • DOI: 10.1021/jp507152j

Opening the Gate: Framework Flexibility in ZIF-8 Explored by Experiments and Simulations
journal, June 2011

  • Fairen-Jimenez, D.; Moggach, S. A.; Wharmby, M. T.
  • Journal of the American Chemical Society, Vol. 133, Issue 23
  • DOI: 10.1021/ja202154j

Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage
journal, January 2016

  • Gómez-Gualdrón, Diego A.; Colón, Yamil J.; Zhang, Xu
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE02104B

Molecular simulations of very high pressure hydrogen storage using metal–organic frameworks
journal, November 2010


High-Throughput Screening of Porous Crystalline Materials for Hydrogen Storage Capacity near Room Temperature
journal, March 2014

  • Colón, Yamil J.; Fairen-Jimenez, David; Wilmer, Christopher E.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 10
  • DOI: 10.1021/jp4122326

Review of hydrogen storage techniques for on board vehicle applications
journal, November 2013


Computational Discovery of New Zeolite-Like Materials
journal, October 2009

  • Deem, Michael W.; Pophale, Ramdas; Cheeseman, Phillip A.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 51
  • DOI: 10.1021/jp906984z

Quantitative Structure–Property Relationship Modeling of Diverse Materials Properties
journal, January 2012

  • Le, Tu; Epa, V. Chandana; Burden, Frank R.
  • Chemical Reviews, Vol. 112, Issue 5
  • DOI: 10.1021/cr200066h

Efficient Monte Carlo Simulations of Gas Molecules Inside Porous Materials
journal, June 2012

  • Kim, Jihan; Smit, Berend
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 7
  • DOI: 10.1021/ct3003699

Theoretical Limits of Hydrogen Storage in Metal–Organic Frameworks: Opportunities and Trade-Offs
journal, August 2013

  • Goldsmith, Jacob; Wong-Foy, Antek G.; Cafarella, Michael J.
  • Chemistry of Materials, Vol. 25, Issue 16
  • DOI: 10.1021/cm401978e

Water Stability and Adsorption in Metal–Organic Frameworks
journal, September 2014

  • Burtch, Nicholas C.; Jasuja, Himanshu; Walton, Krista S.
  • Chemical Reviews, Vol. 114, Issue 20, p. 10575-10612
  • DOI: 10.1021/cr5002589

In silico Design of Porous Polymer Networks: High-Throughput Screening for Methane Storage Materials
journal, March 2014

  • Martin, Richard L.; Simon, Cory M.; Smit, Berend
  • Journal of the American Chemical Society, Vol. 136, Issue 13
  • DOI: 10.1021/ja4123939

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Design Requirements for Metal-Organic Frameworks as Hydrogen Storage Materials
journal, November 2007

  • Frost, Houston; Snurr, Randall Q.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 50
  • DOI: 10.1021/jp076657p

Discovery and Optimization of Materials Using Evolutionary Approaches
journal, May 2016


Towards computational design of zeolite catalysts for CO 2 reduction
journal, January 2015

  • Thornton, A. W.; Winkler, D. A.; Liu, M. S.
  • RSC Advances, Vol. 5, Issue 55
  • DOI: 10.1039/C5RA06214D

Systematic investigation of the mechanical properties of pure silica zeolites: stiffness, anisotropy, and negative linear compressibility
journal, January 2013

  • Coudert, François-Xavier
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 38
  • DOI: 10.1039/c3cp51817e

Molecular Design of Amorphous Porous Organic Cages for Enhanced Gas Storage
journal, March 2015

  • Evans, Jack D.; Huang, David M.; Hill, Matthew R.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 14
  • DOI: 10.1021/jp512944r

High-throughput screening of small-molecule adsorption in MOF
journal, January 2013

  • Canepa, Pieremanuele; Arter, Calvin A.; Conwill, Eliot M.
  • Journal of Materials Chemistry A, Vol. 1, Issue 43
  • DOI: 10.1039/c3ta12395b

Modelling and Prediction of Bacterial Attachment to Polymers
journal, December 2013

  • Epa, V. C.; Hook, A. L.; Chang, C.
  • Advanced Functional Materials, Vol. 24, Issue 14
  • DOI: 10.1002/adfm.201302877

Metal−Organic Frameworks Impregnated with Magnesium-Decorated Fullerenes for Methane and Hydrogen Storage
journal, August 2009

  • Thornton, Aaron W.; Nairn, Kate M.; Hill, James M.
  • Journal of the American Chemical Society, Vol. 131, Issue 30
  • DOI: 10.1021/ja9036302

Cooperative insertion of CO2 in diamine-appended metal-organic frameworks
journal, March 2015

  • McDonald, Thomas M.; Mason, Jarad A.; Kong, Xueqian
  • Nature, Vol. 519, Issue 7543
  • DOI: 10.1038/nature14327

Hydrogen storage over metal-doped activated carbon
journal, June 2015

  • Rossetti, Ilenia; Ramis, Gianguido; Gallo, Alessandro
  • International Journal of Hydrogen Energy, Vol. 40, Issue 24
  • DOI: 10.1016/j.ijhydene.2015.04.064

Large-scale screening of hypothetical metal–organic frameworks
journal, November 2011

  • Wilmer, Christopher E.; Leaf, Michael; Lee, Chang Yeon
  • Nature Chemistry, Vol. 4, Issue 2, p. 83-89
  • DOI: 10.1038/nchem.1192

Insights on the Molecular Mechanisms of Hydrogen Adsorption in Zeolites
journal, June 2013

  • Deeg, Kathryn S.; Gutiérrez-Sevillano, Juan José; Bueno-Pérez, Rocío
  • The Journal of Physical Chemistry C, Vol. 117, Issue 27
  • DOI: 10.1021/jp4037233

Discovery of optimal zeolites for challenging separations and chemical transformations using predictive materials modeling
journal, January 2015

  • Bai, Peng; Jeon, Mi Young; Ren, Limin
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms6912

Feasibility of zeolitic imidazolate framework membranes for clean energy applications
journal, January 2012

  • Thornton, Aaron W.; Dubbeldam, David; Liu, Ming S.
  • Energy & Environmental Science, Vol. 5, Issue 6
  • DOI: 10.1039/c2ee21743k

Computer-Assisted Screening of Ordered Crystalline Nanoporous Adsorbents for Separation of Alkane Isomers
journal, October 2012

  • Dubbeldam, David; Krishna, Rajamani; Calero, Sofía
  • Angewandte Chemie International Edition, Vol. 51, Issue 47
  • DOI: 10.1002/anie.201205040

Machine-learning-assisted materials discovery using failed experiments
journal, May 2016

  • Raccuglia, Paul; Elbert, Katherine C.; Adler, Philip D. F.
  • Nature, Vol. 533, Issue 7601
  • DOI: 10.1038/nature17439

An Integrated Virtual Screening Approach for VEGFR-2 Inhibitors
journal, December 2013

  • Zhang, Yanmin; Yang, Shangyan; Jiao, Yu
  • Journal of Chemical Information and Modeling, Vol. 53, Issue 12
  • DOI: 10.1021/ci400429g

Path integral simulations of mixed para ‐D 2 and ortho ‐D 2 clusters: The orientational effects
journal, May 1994

  • Buch, V.
  • The Journal of Chemical Physics, Vol. 100, Issue 10
  • DOI: 10.1063/1.466854

Aqueous Solubility Prediction: Do Crystal Lattice Interactions Help?
journal, June 2013

  • Salahinejad, Maryam; Le, Tu C.; Winkler, David A.
  • Molecular Pharmaceutics, Vol. 10, Issue 7
  • DOI: 10.1021/mp4001958

Magnetic Metal-Organic Frameworks for Efficient Carbon Dioxide Capture and Remote Trigger Release
journal, January 2016

  • Li, Haiqing; Sadiq, Muhammad Munir; Suzuki, Kiyonori
  • Advanced Materials, Vol. 28, Issue 9
  • DOI: 10.1002/adma.201505320