DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw

Abstract

Abstract Rapid Arctic warming is expected to increase global greenhouse gas concentrations as permafrost thaw exposes immense stores of frozen carbon (C) to microbial decomposition. Permafrost thaw also stimulates plant growth, which could offset C loss. Using data from 7 years of experimental Air and Soil warming in moist acidic tundra, we show that Soil warming had a much stronger effect on CO 2 flux than Air warming. Soil warming caused rapid permafrost thaw and increased ecosystem respiration (R eco ), gross primary productivity ( GPP ), and net summer CO 2 storage ( NEE ). Over 7 years R eco , GPP , and NEE also increased in Control (i.e., ambient plots), but this change could be explained by slow thaw in Control areas. In the initial stages of thaw, R eco , GPP , and NEE increased linearly with thaw across all treatments, despite different rates of thaw. As thaw in Soil warming continued to increase linearly, ground surface subsidence created saturated microsites and suppressed R eco , GPP , and NEE . However R eco and GPP remained high in areas with large Eriophorum vaginatum biomass. In general NEE increased with thaw, but was more strongly correlated with plantmore » biomass than thaw, indicating that higher R eco in deeply thawed areas during summer months was balanced by GPP . Summer CO 2 flux across treatments fit a single quadratic relationship that captured the functional response of CO 2 flux to thaw, water table depth, and plant biomass. These results demonstrate the importance of indirect thaw effects on CO 2 flux: plant growth and water table dynamics. Nonsummer R eco models estimated that the area was an annual CO 2 source during all years of observation. Nonsummer CO 2 loss in warmer, more deeply thawed soils exceeded the increases in summer GPP , and thawed tundra was a net annual CO 2 source.« less

Authors:
ORCiD logo [1];  [2];  [1];  [2];  [3];  [1];  [4];  [1];  [2];  [1]
  1. Northern Arizona Univ., Flagstaff, AZ (United States)
  2. Univ. of Florida, Gainesville, FL (United States)
  3. Woods Hole Research Center, Falmouth, MA (United States)
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1351785
Alternate Identifier(s):
OSTI ID: 1373823
Grant/Contract Number:  
AC05-00OR22725; SC0006982; SC0014085
Resource Type:
Accepted Manuscript
Journal Name:
Global Change Biology
Additional Journal Information:
Journal Volume: 23; Journal Issue: 9; Journal ID: ISSN 1354-1013
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Arctic; carbon; ecosystem respiration; experimental warming; gross primary productivity; net ecosystem exchange; permafrost; thaw; tundra

Citation Formats

Mauritz, Marguerite, Bracho, Rosvel, Celis, Gerardo, Hutchings, Jack, Natali, Susan M., Pegoraro, Elaine, Salmon, Verity G., Schädel, Christina, Webb, Elizabeth E., and Schuur, Edward A. G. Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw. United States: N. p., 2017. Web. doi:10.1111/gcb.13661.
Mauritz, Marguerite, Bracho, Rosvel, Celis, Gerardo, Hutchings, Jack, Natali, Susan M., Pegoraro, Elaine, Salmon, Verity G., Schädel, Christina, Webb, Elizabeth E., & Schuur, Edward A. G. Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw. United States. https://doi.org/10.1111/gcb.13661
Mauritz, Marguerite, Bracho, Rosvel, Celis, Gerardo, Hutchings, Jack, Natali, Susan M., Pegoraro, Elaine, Salmon, Verity G., Schädel, Christina, Webb, Elizabeth E., and Schuur, Edward A. G. Thu . "Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw". United States. https://doi.org/10.1111/gcb.13661. https://www.osti.gov/servlets/purl/1351785.
@article{osti_1351785,
title = {Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw},
author = {Mauritz, Marguerite and Bracho, Rosvel and Celis, Gerardo and Hutchings, Jack and Natali, Susan M. and Pegoraro, Elaine and Salmon, Verity G. and Schädel, Christina and Webb, Elizabeth E. and Schuur, Edward A. G.},
abstractNote = {Abstract Rapid Arctic warming is expected to increase global greenhouse gas concentrations as permafrost thaw exposes immense stores of frozen carbon (C) to microbial decomposition. Permafrost thaw also stimulates plant growth, which could offset C loss. Using data from 7 years of experimental Air and Soil warming in moist acidic tundra, we show that Soil warming had a much stronger effect on CO 2 flux than Air warming. Soil warming caused rapid permafrost thaw and increased ecosystem respiration (R eco ), gross primary productivity ( GPP ), and net summer CO 2 storage ( NEE ). Over 7 years R eco , GPP , and NEE also increased in Control (i.e., ambient plots), but this change could be explained by slow thaw in Control areas. In the initial stages of thaw, R eco , GPP , and NEE increased linearly with thaw across all treatments, despite different rates of thaw. As thaw in Soil warming continued to increase linearly, ground surface subsidence created saturated microsites and suppressed R eco , GPP , and NEE . However R eco and GPP remained high in areas with large Eriophorum vaginatum biomass. In general NEE increased with thaw, but was more strongly correlated with plant biomass than thaw, indicating that higher R eco in deeply thawed areas during summer months was balanced by GPP . Summer CO 2 flux across treatments fit a single quadratic relationship that captured the functional response of CO 2 flux to thaw, water table depth, and plant biomass. These results demonstrate the importance of indirect thaw effects on CO 2 flux: plant growth and water table dynamics. Nonsummer R eco models estimated that the area was an annual CO 2 source during all years of observation. Nonsummer CO 2 loss in warmer, more deeply thawed soils exceeded the increases in summer GPP , and thawed tundra was a net annual CO 2 source.},
doi = {10.1111/gcb.13661},
journal = {Global Change Biology},
number = 9,
volume = 23,
place = {United States},
year = {Thu Feb 16 00:00:00 EST 2017},
month = {Thu Feb 16 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 56 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Responses of Arctic Tundra to Experimental and Observed Changes in Climate
journal, April 1995

  • Chapin, F. Stuart; Shaver, Gaius R.; Giblin, Anne E.
  • Ecology, Vol. 76, Issue 3
  • DOI: 10.2307/1939337

Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment
journal, January 2010


Response of NDVI, biomass, and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra
journal, March 2003


Controls on ecosystem and root respiration across a permafrost and wetland gradient in interior Alaska
journal, December 2013

  • McConnell, Nicole A.; Turetsky, Merritt R.; David McGuire, A.
  • Environmental Research Letters, Vol. 8, Issue 4
  • DOI: 10.1088/1748-9326/8/4/045029

Pan-Arctic modelling of net ecosystem exchange of CO 2
journal, August 2013

  • Shaver, G. R.; Rastetter, E. B.; Salmon, V.
  • Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 368, Issue 1624
  • DOI: 10.1098/rstb.2012.0485

The unseen iceberg: plant roots in arctic tundra
journal, September 2014

  • Iversen, Colleen M.; Sloan, Victoria L.; Sullivan, Patrick F.
  • New Phytologist, Vol. 205, Issue 1
  • DOI: 10.1111/nph.13003

Increased photosynthesis compensates for shorter growing season in subarctic tundra—8 years of snow accumulation manipulations
journal, September 2014


Response of CO 2 exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst development
journal, January 2009

  • Vogel, Jason; Schuur, Edward A. G.; Trucco, Christian
  • Journal of Geophysical Research, Vol. 114, Issue G4
  • DOI: 10.1029/2008JG000901

Temperature and Plant Species Control Over Litter Decomposition in Alaskan Tundra
journal, February 1996

  • Hobbie, Sarah E.
  • Ecological Monographs, Vol. 66, Issue 4
  • DOI: 10.2307/2963492

CLIMATE CHANGE: Permafrost and the Global Carbon Budget
journal, June 2006


Effects of Experimental Water Table and Temperature Manipulations on Ecosystem CO2 Fluxes in an Alaskan Rich Fen
journal, October 2009


From The Cover: Plant community responses to experimental warming across the tundra biome
journal, January 2006

  • Walker, M. D.; Wahren, C. H.; Hollister, R. D.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 5
  • DOI: 10.1073/pnas.0503198103

An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions
journal, January 2012


The Effects of Permafrost Thaw on Soil Hydrologic, Thermal, and Carbon Dynamics in an Alaskan Peatland
journal, November 2011

  • O’Donnell, Jonathan A.; Jorgenson, M. Torre; Harden, Jennifer W.
  • Ecosystems, Vol. 15, Issue 2
  • DOI: 10.1007/s10021-011-9504-0

Winter precipitation and snow accumulation drive the methane sink or source strength of Arctic tussock tundra
journal, May 2016

  • Blanc-Betes, Elena; Welker, Jeffrey M.; Sturchio, Neil C.
  • Global Change Biology, Vol. 22, Issue 8
  • DOI: 10.1111/gcb.13242

Interactions between Carbon and Nitrogen Mineralization and Soil Organic Matter Chemistry in Arctic Tundra Soils
journal, March 2003


Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns
journal, December 2014

  • Elmendorf, Sarah C.; Henry, Gregory H. R.; Hollister, Robert D.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 2
  • DOI: 10.1073/pnas.1410088112

Autumn warming reduces the CO 2 sink of a black spruce forest in interior Alaska based on a nine-year eddy covariance measurement
journal, February 2014

  • Ueyama, Masahito; Iwata, Hiroki; Harazono, Yoshinobu
  • Global Change Biology, Vol. 20, Issue 4
  • DOI: 10.1111/gcb.12434

Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment
journal, March 2016

  • Abbott, Benjamin W.; Jones, Jeremy B.; Schuur, Edward A. G.
  • Environmental Research Letters, Vol. 11, Issue 3
  • DOI: 10.1088/1748-9326/11/3/034014

CO2 exchange in three Canadian High Arctic ecosystems: response to long-term experimental warming
journal, December 2004


Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model
journal, January 2014

  • Euskirchen, Eugénie S.; Carman, Tobey B.; McGuire, A. David
  • Global Change Biology, Vol. 20, Issue 3
  • DOI: 10.1111/gcb.12392

Open-top designs for manipulating field temperature in high-latitude ecosystems
journal, December 1997


Increased wintertime CO 2 loss as a result of sustained tundra warming : Tundra Wintertime CO
journal, February 2016

  • Webb, Elizabeth E.; Schuur, Edward A. G.; Natali, Susan M.
  • Journal of Geophysical Research: Biogeosciences, Vol. 121, Issue 2
  • DOI: 10.1002/2014JG002795

The effect of permafrost thaw on old carbon release and net carbon exchange from tundra
journal, May 2009

  • Schuur, Edward A. G.; Vogel, Jason G.; Crummer, Kathryn G.
  • Nature, Vol. 459, Issue 7246
  • DOI: 10.1038/nature08031

PLANT CARBON–NUTRIENT INTERACTIONS CONTROL CO 2 EXCHANGE IN ALASKAN WET SEDGE TUNDRA ECOSYSTEMS
journal, February 2000


Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology
journal, March 2016

  • Liljedahl, Anna K.; Boike, Julia; Daanen, Ronald P.
  • Nature Geoscience, Vol. 9, Issue 4
  • DOI: 10.1038/ngeo2674

A general and simple method for obtaining R 2 from generalized linear mixed-effects models
journal, December 2012


Vegetation, climatic changes and net carbon sequestration in a North-Scandinavian subarctic mire over 30 years
journal, October 2005


What is the relationship between changes in canopy leaf area and changes in photosynthetic CO 2 flux in arctic ecosystems?
journal, January 2007


Long-term experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundra
journal, October 1999


Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems
journal, September 2015

  • Hicks Pries, Caitlin E.; van Logtestijn, Richard S. P.; Schuur, Edward A. G.
  • Global Change Biology, Vol. 21, Issue 12
  • DOI: 10.1111/gcb.13032

Increasing shrub abundance in the Arctic
journal, May 2001

  • Sturm, Matthew; Racine, Charles; Tape, Kenneth
  • Nature, Vol. 411, Issue 6837
  • DOI: 10.1038/35079180

Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source
journal, February 1993

  • Oechel, Walter C.; Hastings, Steven J.; Vourlrtis, George
  • Nature, Vol. 361, Issue 6412
  • DOI: 10.1038/361520a0

Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
journal, January 2014


Environmental and Vegetation Drivers of Seasonal CO2 Fluxes in a Sub-arctic Forest–Mire Ecotone
journal, November 2013


Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra: WARMING OF ALASKAN TUNDRA
journal, February 2011


Direct and indirect effects of temperature on arctic plants
journal, June 1983


TUNDRA CO 2 FLUXES IN RESPONSE TO EXPERIMENTAL WARMING ACROSS LATITUDINAL AND MOISTURE GRADIENTS
journal, May 2007

  • Oberbauer, Steven F.; Tweedie, Craig E.; Welker, Jeff M.
  • Ecological Monographs, Vol. 77, Issue 2
  • DOI: 10.1890/06-0649

Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature, moisture and fertilizer
journal, May 2006


Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA)
journal, December 2013

  • Ueyama, Masahito; Iwata, Hiroki; Harazono, Yoshinobu
  • Ecological Applications, Vol. 23, Issue 8
  • DOI: 10.1890/11-0875.1

Plant Species Composition and Productivity following Permafrost Thaw and Thermokarst in Alaskan Tundra
journal, March 2007


Extension of Nakagawa & Schielzeth's R 2 GLMM to random slopes models
journal, July 2014


Permafrost Destabilization and Thermokarst Following Snow Fence Installation, Barrow, Alaska, U.S.A
journal, November 2006


Permafrost soils and carbon cycling
journal, January 2015


Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra
journal, October 2015

  • Hicks Pries, Caitlin E.; Schuur, Edward A. G.; Natali, Susan M.
  • Nature Climate Change, Vol. 6, Issue 2
  • DOI: 10.1038/nclimate2830

Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ 13 C and ∆ 14 C
journal, November 2012

  • Hicks Pries, Caitlin E.; Schuur, Edward A. G.; Crummer, Kathryn G.
  • Global Change Biology, Vol. 19, Issue 2
  • DOI: 10.1111/gcb.12058

A synthesis: The role of nutrients as constraints on carbon balances in boreal and arctic regions
journal, May 2002

  • Hobbie, Sarah E.; Nadelhoffer, Knute J.; Högberg, Peter
  • Plant and Soil, Vol. 242, Issue 1, p. 163-170
  • DOI: 10.1023/A:1019670731128

Seven-year trends of CO 2 exchange in a tundra ecosystem affected by long-term permafrost thaw : CARBON EXCHANGE IN THAWING TUNDRA
journal, June 2012

  • Trucco, Christian; Schuur, Edward A. G.; Natali, Susan M.
  • Journal of Geophysical Research: Biogeosciences, Vol. 117, Issue G2
  • DOI: 10.1029/2011JG001907

Effects of drainage and temperature on carbon balance of tussock tundra micrososms
journal, December 1996

  • Johnson, L. C.; Shaver, G. R.; Giblin, A. E.
  • Oecologia, Vol. 108, Issue 4
  • DOI: 10.1007/BF00329050

Impact of hydrological variations on modeling of peatland CO 2 fluxes: Results from the North American Carbon Program site synthesis : MODELED AND OBSERVED PEATLAND CO
journal, March 2012

  • Sulman, Benjamin N.; Desai, Ankur R.; Schroeder, Nicole M.
  • Journal of Geophysical Research: Biogeosciences, Vol. 117, Issue G1
  • DOI: 10.1029/2011JG001862

BIOMASS AND CO 2 FLUX IN WET SEDGE TUNDRAS: RESPONSES TO NUTRIENTS, TEMPERATURE, AND LIGHT
journal, February 1998


Wintertime CO 2 efflux from Arctic soils: Implications for annual carbon budgets
journal, September 1999

  • Fahnestock, Jace T.; Jones, Michael H.; Welker, Jeffrey M.
  • Global Biogeochemical Cycles, Vol. 13, Issue 3
  • DOI: 10.1029/1999GB900006

Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost: Increased plant productivity in Alaskan tundra
journal, November 2011


Soil organic carbon pools in the northern circumpolar permafrost region: SOIL ORGANIC CARBON POOLS
journal, June 2009

  • Tarnocai, C.; Canadell, J. G.; Schuur, E. A. G.
  • Global Biogeochemical Cycles, Vol. 23, Issue 2
  • DOI: 10.1029/2008GB003327

Field information links permafrost carbon to physical vulnerabilities of thawing: C AND N VULERABLITIES OF THAWING
journal, August 2012

  • Harden, Jennifer W.; Koven, Charles D.; Ping, Chien-Lu
  • Geophysical Research Letters, Vol. 39, Issue 15
  • DOI: 10.1029/2012GL051958

Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle
journal, September 2008

  • Schuur, Edward A. G.; Bockheim, James; Canadell, Josep G.
  • BioScience, Vol. 58, Issue 8
  • DOI: 10.1641/B580807

Climate change and the permafrost carbon feedback
journal, April 2015

  • Schuur, E. A. G.; McGuire, A. D.; Schädel, C.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14338

Sensitivity of C Sequestration in Reintroduced Sphagnum to Water-Level Variation in a Cutaway Peatland
journal, December 2004


Effects of permafrost thaw on nitrogen availability and plant–soil interactions in a boreal Alaskan lowland
journal, July 2016

  • Finger, Rebecca A.; Turetsky, Merritt R.; Kielland, Knut
  • Journal of Ecology, Vol. 104, Issue 6
  • DOI: 10.1111/1365-2745.12639

Permafrost degradation stimulates carbon loss from experimentally warmed tundra
journal, March 2014

  • Natali, Susan M.; Schuur, Edward A. G.; Webb, Elizabeth E.
  • Ecology, Vol. 95, Issue 3
  • DOI: 10.1890/13-0602.1

Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-arctic Sweden
journal, August 2013

  • Johansson, Margareta; Callaghan, Terry V.; Bosiö, Julia
  • Environmental Research Letters, Vol. 8, Issue 3
  • DOI: 10.1088/1748-9326/8/3/035025

Annual patterns and budget of CO 2 flux in an Arctic tussock tundra ecosystem
journal, March 2014

  • Oechel, Walter C.; Laskowski, Cheryl A.; Burba, George
  • Journal of Geophysical Research: Biogeosciences, Vol. 119, Issue 3
  • DOI: 10.1002/2013JG002431

Responses of Tundra Plants to Experimental Warming:Meta-Analysis of the International Tundra Experiment
journal, November 1999


Experimental Warming Alters Productivity and Isotopic Signatures of Tundra Mosses
journal, May 2015


Tundra ecosystems observed to be CO 2 sources due to differential amplification of the carbon cycle
journal, August 2013

  • Belshe, E. F.; Schuur, E. A. G.; Bolker, B. M.
  • Ecology Letters, Vol. 16, Issue 10
  • DOI: 10.1111/ele.12164

Physical and ecological changes associated with warming permafrost and thermokarst in Interior Alaska
journal, July 2009

  • Osterkamp, T. E.; Jorgenson, M. T.; Schuur, E. A. G.
  • Permafrost and Periglacial Processes, Vol. 20, Issue 3
  • DOI: 10.1002/ppp.656

Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw
journal, February 2016

  • Salmon, Verity G.; Soucy, Patrick; Mauritz, Marguerite
  • Global Change Biology, Vol. 22, Issue 5
  • DOI: 10.1111/gcb.13204

Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization
journal, September 2004

  • Mack, Michelle C.; Schuur, Edward A. G.; Bret-Harte, M. Syndonia
  • Nature, Vol. 431, Issue 7007
  • DOI: 10.1038/nature02887

The timing of snow melt controls the annual CO 2 balance in a subarctic fen
journal, January 2004


Permafrost thaw and soil moisture driving CO 2 and CH 4 release from upland tundra
journal, March 2015

  • Natali, Susan M.; Schuur, Edward A. G.; Mauritz, Marguerite
  • Journal of Geophysical Research: Biogeosciences, Vol. 120, Issue 3
  • DOI: 10.1002/2014JG002872

The response of Alaskan arctic tundra to experimental warming: differences between short- and long-term responses
journal, April 2005


Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost
journal, January 2000


Seasonal patterns of carbon dioxide and water fluxes in three representative tundra ecosystems in northern Alaska
journal, January 2012

  • Euskirchen, E. S.; Bret-Harte, M. S.; Scott, G. J.
  • Ecosphere, Vol. 3, Issue 1
  • DOI: 10.1890/ES11-00202.1

Moisture drives surface decomposition in thawing tundra: DECOMPOSITION IN THAWING TUNDRA
journal, July 2013

  • Hicks Pries, Caitlin E.; Schuur, E. A. G.; Vogel, Jason G.
  • Journal of Geophysical Research: Biogeosciences, Vol. 118, Issue 3
  • DOI: 10.1002/jgrg.20089

Random effects structure for confirmatory hypothesis testing: Keep it maximal
journal, April 2013

  • Barr, Dale J.; Levy, Roger; Scheepers, Christoph
  • Journal of Memory and Language, Vol. 68, Issue 3
  • DOI: 10.1016/j.jml.2012.11.001

Long-term CO2 production following permafrost thaw
journal, July 2013

  • Elberling, Bo; Michelsen, Anders; Schädel, Christina
  • Nature Climate Change, Vol. 3, Issue 10
  • DOI: 10.1038/nclimate1955

Long-term experimental warming and nutrient additions increase productivity in tall deciduous shrub tundra
journal, June 2014

  • DeMarco, Jennie; Mack, Michelle C.; Bret-Harte, M. Syndonia
  • Ecosphere, Vol. 5, Issue 6
  • DOI: 10.1890/ES13-00281.1

A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands
journal, March 2012


Respiration and Microbial Dynamics in Two Subarctic Ecosystems during Winter and Spring Thaw: Effects of Increased Snow Depth
journal, May 2007


Plant functional types do not predict biomass responses to removal and fertilization in Alaskan tussock tundra
journal, July 2008


Incorporating spatial heterogeneity created by permafrost thaw into a landscape carbon estimate: SPATIAL VARIATION IN CARBON EXCHANGE
journal, March 2012

  • Belshe, E. F.; Schuur, E. A. G.; Bolker, B. M.
  • Journal of Geophysical Research: Biogeosciences, Vol. 117, Issue G1
  • DOI: 10.1029/2011JG001836

Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils
journal, June 2016

  • Schädel, Christina; Bader, Martin K. -F.; Schuur, Edward A. G.
  • Nature Climate Change, Vol. 6, Issue 10
  • DOI: 10.1038/nclimate3054

Differential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost: Carbon fluxes and permafrost thaw
journal, August 2014

  • Euskirchen, E. S.; Edgar, C. W.; Turetsky, M. R.
  • Journal of Geophysical Research: Biogeosciences, Vol. 119, Issue 8
  • DOI: 10.1002/2014JG002683

Thermal Regime of Permafrost in Alaska and Predicted Global Warming
journal, March 1990


Small-scale hydrological variation determines landscape CO2 fluxes in the high Arctic
journal, June 2006


Permafrost carbon-climate feedbacks accelerate global warming
journal, August 2011

  • Koven, C. D.; Ringeval, B.; Friedlingstein, P.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 36
  • DOI: 10.1073/pnas.1103910108

Effects of Temperature and Substrate Quality on Element Mineralization in Six Arctic Soils
journal, February 1991

  • Nadelhoffer, K. J.; Giblin, A. E.; Shaver, G. R.
  • Ecology, Vol. 72, Issue 1
  • DOI: 10.2307/1938918

Reduction in areal extent of high-latitude wetlands in response to permafrost thaw
journal, June 2011

  • Avis, Christopher A.; Weaver, Andrew J.; Meissner, Katrin J.
  • Nature Geoscience, Vol. 4, Issue 7
  • DOI: 10.1038/ngeo1160

Response of Arctic ecosystems to climate change: results of long-term field experiments in Sweden and Alaska
journal, December 1999


Identifying the sources and uncertainties of ecosystem respiration in Arctic tussock tundra
journal, August 2014


Response of Arctic ecosystems to climate change: results of long-term field experiments in Sweden and Alaska
journal, January 1999


Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment
journal, April 2005


Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009: MODELING PERMAFROST CARBON DYNAMICS
journal, July 2016

  • McGuire, A. David; Koven, Charles; Lawrence, David M.
  • Global Biogeochemical Cycles, Vol. 30, Issue 7
  • DOI: 10.1002/2016GB005405

The effects of water table manipulation and elevated temperature on the net CO 2 flux of wet sedge tundra ecosystems
journal, January 1998


Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes
journal, July 2013

  • Torre Jorgenson, M.; Harden, Jennifer; Kanevskiy, Mikhail
  • Environmental Research Letters, Vol. 8, Issue 3
  • DOI: 10.1088/1748-9326/8/3/035017

Carbon respiration from subsurface peat accelerated by climate warming in the subarctic
journal, July 2009

  • Dorrepaal, Ellen; Toet, Sylvia; van Logtestijn, Richard S. P.
  • Nature, Vol. 460, Issue 7255
  • DOI: 10.1038/nature08216

Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics
journal, March 2015

  • Koven, Charles D.; Lawrence, David M.; Riley, William J.
  • Proceedings of the National Academy of Sciences
  • DOI: 10.1073/pnas.1415123112

An assessment of the carbon balance of arctic tundra: comparisons among observations, process models, and atmospheric inversions
journal, January 2012

  • McGuire, A. D.; Christensen, T. R.; Hayes, D.
  • Biogeosciences Discussions, Vol. 9, Issue 4
  • DOI: 10.5194/bgd-9-4543-2012

Permafrost soils and carbon cycling
journal, January 2014


Works referencing / citing this record:

Increased CO2 efflux due to long-term experimental summer warming and litter input in subarctic tundra – CO2 fluxes at snowmelt, in growing season, fall and winter
journal, September 2019


Interactions Between Land-Use Change and Climate-Carbon Cycle Feedbacks
journal, April 2018


Direct observation of permafrost degradation and rapid soil carbon loss in tundra
journal, July 2019


Below-ground plant traits influence tundra plant acquisition of newly thawed permafrost nitrogen
journal, September 2018

  • Hewitt, Rebecca E.; Taylor, D. Lee; Genet, Hélène
  • Journal of Ecology, Vol. 107, Issue 2
  • DOI: 10.1111/1365-2745.13062

Increasing canopy photosynthesis in rice can be achieved without a large increase in water use—A model based on free‐air CO 2 enrichment
journal, December 2017

  • Ikawa, Hiroki; Chen, Charles P.; Sikma, Martin
  • Global Change Biology, Vol. 24, Issue 3
  • DOI: 10.1111/gcb.13981

Biotic responses buffer warming-induced soil organic carbon loss in Arctic tundra
journal, June 2018

  • Liang, Junyi; Xia, Jiangyang; Shi, Zheng
  • Global Change Biology, Vol. 24, Issue 10
  • DOI: 10.1111/gcb.14325

Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw
journal, February 2019

  • Voigt, Carolina; Marushchak, Maija E.; Mastepanov, Mikhail
  • Global Change Biology, Vol. 25, Issue 5
  • DOI: 10.1111/gcb.14574

Model parameterization to represent processes at unresolved scales and changing properties of evolving systems
journal, January 2020

  • Luo, Yiqi; Schuur, Edward A. G.
  • Global Change Biology, Vol. 26, Issue 3
  • DOI: 10.1111/gcb.14939

Mycobiont contribution to tundra plant acquisition of permafrost‐derived nitrogen
journal, January 2020

  • Hewitt, Rebecca E.; DeVan, M. Rae; Lagutina, Irina V.
  • New Phytologist, Vol. 226, Issue 1
  • DOI: 10.1111/nph.16235

Long-Term Warming in Alaska Enlarges the Diazotrophic Community in Deep Soils
journal, February 2019


Partitioning net ecosystem exchange of CO 2 on the pedon scale in the Lena River Delta, Siberia
journal, January 2019

  • Eckhardt, Tim; Knoblauch, Christian; Kutzbach, Lars
  • Biogeosciences, Vol. 16, Issue 7
  • DOI: 10.5194/bg-16-1543-2019

Divergent patterns of experimental and model-derived permafrost ecosystem carbon dynamics in response to Arctic warming
journal, October 2018

  • Schädel, Christina; Koven, Charles D.; Lawrence, David M.
  • Environmental Research Letters, Vol. 13, Issue 10
  • DOI: 10.1088/1748-9326/aae0ff

Denitrifiers, nitrogen-fixing bacteria and N2O soil gas flux in high Arctic ice-wedge polygon cryosols
journal, April 2019

  • Altshuler, Ianina; Ronholm, Jennifer; Layton, Alice
  • FEMS Microbiology Ecology, Vol. 95, Issue 5
  • DOI: 10.1093/femsec/fiz049

Soil moisture and hydrology projections of the permafrost region – a model intercomparison
journal, January 2020

  • Andresen, Christian G.; Lawrence, David M.; Wilson, Cathy J.
  • The Cryosphere, Vol. 14, Issue 2
  • DOI: 10.5194/tc-14-445-2020

Species interactions and distinct microbial communities in high Arctic permafrost affected cryosols are associated with the CH 4 and CO 2 gas fluxes
journal, July 2019

  • Altshuler, Ianina; Hamel, Jérémie; Turney, Shaun
  • Environmental Microbiology, Vol. 21, Issue 10
  • DOI: 10.1111/1462-2920.14715

Long-Term Warming in Alaska Enlarges the Diazotrophic Community in Deep Soils
journal, February 2019