skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on April 3, 2018

Title: Equilibrium shapes and surface selection of nanostructures in 6H-SiC

Here, the equilibrium shape of 6H-SiC nanostructures and their surfaces were studied by analyzing nano-void (~10 nm) shapes, which were introduced in monocrystalline 6H-SiC by high-temperature neutron irradiation, using transmission electron microscopy. The nano-voids were determined to be irregular icosahedrons truncated with six {1¯100}, twelve {1¯103}, one smaller top-basal, and one larger bottom-basal planes, which suggests that {1¯100} and {1¯103} are the next stable surface class after the basal planes. The relatively frequent absence of the {1¯100} surface in the nano-voids indicated that the (1¯103¯) surface type is energetically rather stable. These non-basal surfaces were found not to be atomically flat due to the creation of nanofacets with half unit-cell height in the c-axis. The {1¯100} and {1¯103} surfaces were classified as two and four face types according to their possible nanofacets and surface termination, respectively. We also discuss the surface energy difference between the (1¯103¯) and (1¯103) face types in relation to the energy balance within the equilibrium, but irregular, polyhedron, in which the (1¯103) surface had double the surface energy of the (1¯103¯) surface (~3900 erg/cm 2).
Authors:
 [1] ;  [2] ;  [2] ;  [2]
  1. Kyoto Univ., Kyoto (Japan)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Grant/Contract Number:
AC05-00OR22725
Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 110; Journal Issue: 14; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE
OSTI Identifier:
1351780