skip to main content


Title: Persistent electrochemical performance in epitaxial VO 2(B)

Discovering high-performance energy storage materials is indispensable for renewable energy, electric vehicle performance, and mobile computing. Owing to the open atomic framework and good room temperature conductivity, bronze-phase vanadium dioxide [VO 2(B)] has been regarded as a highly promising electrode material for Li ion batteries. However, previous attempts were unsuccessful to show the desired cycling performance and capacity without chemical modification. Here, we show with epitaxial VO 2(B) films that one can accomplish the theoretical limit for capacity with persistent charging–discharging cyclability owing to the high structural stability and unique open pathways for Li ion conduction. Atomic-scale characterization by scanning transmission electron microscopy and density functional theory calculations also reveal that the unique open pathways in VO 2(B) provide the most stable sites for Li adsorption and diffusion. Furthermore, this work ultimately demonstrates that VO 2(B) is a highly promising energy storage material and has no intrinsic hindrance in achieving superior cyclability with a very high power and capacity in a Li-ion conductor.
 [1] ;  [1] ;  [2] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ; ORCiD logo [1] ; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pennsylvania State Univ., University Park, PA (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 17; Journal Issue: 4; Journal ID: ISSN 1530-6984
American Chemical Society
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
36 MATERIALS SCIENCE; 25 ENERGY STORAGE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; electrode; energy storage; epitaxy; Li ion battery; VO2(B)
OSTI Identifier: