DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Three-dimensional hydrodynamic simulations of OMEGA implosions

Abstract

Here, the effects of large-scale (with Legendre modes ≲10) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming), target offset, and variation in target-layer thickness were investigated using the low-noise, three-dimensional Eulerian hydrodynamic code ASTER. Simulations indicate that these asymmetries can significantly degrade the implosion performance. The most important sources of the asymmetries are the target offsets (~10 to 20 μm), beam-power imbalance (σrms ~ 10%), and variations (~5%) in target-layer thickness. Large-scale asymmetries distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of implosion targets. The ion temperature inferred from the width of simulated neutron spectra is influenced by bulk fuel motion in the distorted hot spot and can result in up to an ~1 -keV increase in apparent temperature. Similar temperature variations along different lines of sight are observed. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires a reduction in large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing highly efficient mid-adiabat (α = 4) implosion designs, which mitigate cross-beam energy transfer and suppress short-wavelength Rayleigh–Taylor growth.

Authors:
 [1];  [1];  [2];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [3];  [3]
  1. Univ. of Rochester, Rochester, NY (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. Naval Research Lab., Washington, D.C. (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Sponsoring Org.:
USDOE Office of Science (SC); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1351534
Alternate Identifier(s):
OSTI ID: 1373964
Report Number(s):
2016-114; 1329
Journal ID: ISSN 1070-664X; 2016-114, 2284, 1329; TRN: US1700567
Grant/Contract Number:  
NA0001944
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 24; Journal Issue: 5; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Igumenshchev, I. V., Michel, D. T., Shah, R. C., Campbell, E. M., Epstein, R., Forrest, C. J., Glebov, V. Yu., Goncharov, V. N., Knauer, J. P., Marshall, F. J., McCrory, R. L., Regan, S. P., Sangster, T. C., Stoeckl, C., Schmitt, A. J., and Obenschain, S. Three-dimensional hydrodynamic simulations of OMEGA implosions. United States: N. p., 2017. Web. doi:10.1063/1.4979195.
Igumenshchev, I. V., Michel, D. T., Shah, R. C., Campbell, E. M., Epstein, R., Forrest, C. J., Glebov, V. Yu., Goncharov, V. N., Knauer, J. P., Marshall, F. J., McCrory, R. L., Regan, S. P., Sangster, T. C., Stoeckl, C., Schmitt, A. J., & Obenschain, S. Three-dimensional hydrodynamic simulations of OMEGA implosions. United States. https://doi.org/10.1063/1.4979195
Igumenshchev, I. V., Michel, D. T., Shah, R. C., Campbell, E. M., Epstein, R., Forrest, C. J., Glebov, V. Yu., Goncharov, V. N., Knauer, J. P., Marshall, F. J., McCrory, R. L., Regan, S. P., Sangster, T. C., Stoeckl, C., Schmitt, A. J., and Obenschain, S. Thu . "Three-dimensional hydrodynamic simulations of OMEGA implosions". United States. https://doi.org/10.1063/1.4979195. https://www.osti.gov/servlets/purl/1351534.
@article{osti_1351534,
title = {Three-dimensional hydrodynamic simulations of OMEGA implosions},
author = {Igumenshchev, I. V. and Michel, D. T. and Shah, R. C. and Campbell, E. M. and Epstein, R. and Forrest, C. J. and Glebov, V. Yu. and Goncharov, V. N. and Knauer, J. P. and Marshall, F. J. and McCrory, R. L. and Regan, S. P. and Sangster, T. C. and Stoeckl, C. and Schmitt, A. J. and Obenschain, S.},
abstractNote = {Here, the effects of large-scale (with Legendre modes ≲10) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming), target offset, and variation in target-layer thickness were investigated using the low-noise, three-dimensional Eulerian hydrodynamic code ASTER. Simulations indicate that these asymmetries can significantly degrade the implosion performance. The most important sources of the asymmetries are the target offsets (~10 to 20 μm), beam-power imbalance (σrms ~ 10%), and variations (~5%) in target-layer thickness. Large-scale asymmetries distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of implosion targets. The ion temperature inferred from the width of simulated neutron spectra is influenced by bulk fuel motion in the distorted hot spot and can result in up to an ~1 -keV increase in apparent temperature. Similar temperature variations along different lines of sight are observed. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires a reduction in large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing highly efficient mid-adiabat (α = 4) implosion designs, which mitigate cross-beam energy transfer and suppress short-wavelength Rayleigh–Taylor growth.},
doi = {10.1063/1.4979195},
journal = {Physics of Plasmas},
number = 5,
volume = 24,
place = {United States},
year = {Thu Mar 30 00:00:00 EDT 2017},
month = {Thu Mar 30 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 24 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Multigrid Tutorial, Second Edition
book, January 2000

  • Briggs, William L.; Henson, Van Emden; McCormick, Steve F.
  • Other Titles in Applied Mathematics
  • DOI: 10.1137/1.9780898719505

Shell trajectory measurements from direct-drive implosion experiments
journal, October 2012

  • Michel, D. T.; Sorce, C.; Epstein, R.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4732179

Direct-drive-implosion experiments with enhanced fluence balance on OMEGA
journal, January 2004

  • Marshall, F. J.; Delettrez, J. A.; Epstein, R.
  • Physics of Plasmas, Vol. 11, Issue 1
  • DOI: 10.1063/1.1628234

On the Stability of Fluid Flows with Spherical Symmetry
journal, January 1954


Neutron spectrometry—An essential tool for diagnosing implosions at the National Ignition Facility (invited)
journal, October 2012

  • Johnson, M. Gatu; Frenje, J. A.; Casey, D. T.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4728095

Effects of local defect growth in direct-drive cryogenic implosions on OMEGA
journal, August 2013

  • Igumenshchev, I. V.; Goncharov, V. N.; Shmayda, W. T.
  • Physics of Plasmas, Vol. 20, Issue 8
  • DOI: 10.1063/1.4818280

The Physics of Inertial Fusion
book, January 2004


Initial performance results of the OMEGA laser system
journal, January 1997


Performance of direct-drive cryogenic targets on OMEGA
journal, May 2008

  • Goncharov, V. N.; Sangster, T. C.; Radha, P. B.
  • Physics of Plasmas, Vol. 15, Issue 5
  • DOI: 10.1063/1.2856551

Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA
journal, May 2014

  • Goncharov, V. N.; Sangster, T. C.; Betti, R.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876618

Two-dimensional simulations of plastic-shell, direct-drive implosions on OMEGA
journal, March 2005

  • Radha, P. B.; Goncharov, V. N.; Collins, T. J. B.
  • Physics of Plasmas, Vol. 12, Issue 3
  • DOI: 10.1063/1.1857530

Parallel geometric multigrid for global weather prediction
journal, January 2010

  • Buckeridge, Sean; Scheichl, Robert
  • Numerical Linear Algebra with Applications
  • DOI: 10.1002/nla.699

Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments
journal, October 1987


Multidimensional analysis of direct-drive, plastic-shell implosions on OMEGA
journal, May 2005

  • Radha, P. B.; Collins, T. J. B.; Delettrez, J. A.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1882333

The National Ignition Facility: Ushering in a new age for high energy density science
journal, April 2009

  • Moses, E. I.; Boyd, R. N.; Remington, B. A.
  • Physics of Plasmas, Vol. 16, Issue 4
  • DOI: 10.1063/1.3116505

The Piecewise Parabolic Method (PPM) for gas-dynamical simulations
journal, April 1984


The effects of target mounts in direct-drive implosions on OMEGA
journal, August 2009

  • Igumenshchev, I. V.; Marshall, F. J.; Marozas, J. A.
  • Physics of Plasmas, Vol. 16, Issue 8
  • DOI: 10.1063/1.3195065

Transport Phenomena in a Completely Ionized Gas
journal, March 1953


National direct-drive program on OMEGA and the National Ignition Facility
journal, October 2016


In situ characterization of high-intensity laser beams on OMEGA
journal, July 2005

  • Forties, R. A.; Marshall, F. J.
  • Review of Scientific Instruments, Vol. 76, Issue 7
  • DOI: 10.1063/1.1947782

Measurements of the ablation-front trajectory and low-mode nonuniformity in direct-drive implosions using x-ray self-emission shadowgraphy
journal, January 2015

  • Michel, D. T.; Davis, A. K.; Armstrong, W.
  • High Power Laser Science and Engineering, Vol. 3
  • DOI: 10.1017/hpl.2015.15

Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA
journal, July 2016


Crossed-beam energy transfer in implosion experiments on OMEGA
journal, December 2010

  • Igumenshchev, I. V.; Edgell, D. H.; Goncharov, V. N.
  • Physics of Plasmas, Vol. 17, Issue 12
  • DOI: 10.1063/1.3532817

Three-dimensional modeling of direct-drive cryogenic implosions on OMEGA
journal, May 2016

  • Igumenshchev, I. V.; Goncharov, V. N.; Marshall, F. J.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4948418

Works referencing / citing this record:

Effects of residual kinetic energy on yield degradation and ion temperature asymmetries in inertial confinement fusion implosions
journal, May 2018

  • Woo, K. M.; Betti, R.; Shvarts, D.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5026706

Measurement of apparent ion temperature using the magnetic recoil spectrometer at the OMEGA laser facility
journal, October 2018

  • Gatu Johnson, M.; Katz, J.; Forrest, C.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5035287

Calibration of a neutron time-of-flight detector with a rapid instrument response function for measurements of bulk fluid motion on OMEGA
journal, October 2018

  • Mannion, O. M.; Glebov, V. Yu.; Forrest, C. J.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5037324

Impact of imposed mode 2 laser drive asymmetry on inertial confinement fusion implosions
journal, January 2019

  • Gatu Johnson, M.; Appelbe, B. D.; Chittenden, J. P.
  • Physics of Plasmas, Vol. 26, Issue 1
  • DOI: 10.1063/1.5066435

Compression and burning of a direct-driven thermonuclear target under the conditions of inhomogeneous heating by a multi-beam megajoule laser
journal, January 2019

  • Bel’kov, S. A.; Bondarenko, S. V.; Demchenko, N. N.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 2
  • DOI: 10.1088/1361-6587/aaf062

The National Direct-Drive Inertial Confinement Fusion Program
journal, December 2018