skip to main content


Title: Estimation of metal strength at very high rates using free-surface Richtmyer–Meshkov Instabilities

Recently, Richtmyer–Meshkov Instabilities (RMI) have been proposed for studying the average strength at strain rates up to at least 10 7/s. RMI experiments involve shocking a metal interface that has initial sinusoidal perturbations. The perturbations invert and grow subsequent to shock and may arrest because of strength effects. In this work we present new RMI experiments and data on a copper target that had five regions with different perturbation amplitudes on the free surface opposite the shock. We estimate the high-rate, low-pressure copper strength by comparing experimental data with Lagrangian numerical simulations. From a detailed computational study we find that mesh convergence must be carefully addressed to accurately compare with experiments, and numerical viscosity has a strong influence on convergence. We also find that modeling the as-built perturbation geometry rather than the nominal makes a significant difference. Because of the confounding effect of tensile damage on total spike growth, which has previously been used as the metric for estimating strength, we instead use a new strength metric: the peak velocity during spike growth. Furthermore, this new metric also allows us to analyze a broader set of experimental results that are sensitive to strength because some larger initial perturbations grow unstablymore » to failure and so do not have a finite total spike growth.« less
ORCiD logo [1] ;  [1] ;  [1] ;  [1] ;  [1] ; ORCiD logo [1] ;  [1] ;  [1] ; ORCiD logo [1] ;  [1] ; ORCiD logo [1] ; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 2199-7446
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Dynamic Behavior of Materials
Additional Journal Information:
Journal Volume: 3; Journal Issue: 2; Journal ID: ISSN 2199-7446
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA), Office of Defense Programs (DP) (NA-10)
Country of Publication:
United States
36 MATERIALS SCIENCE; Richtmyer Meshkov; instability; high strain rate; strength; hydrodynamics; shock; velocimetry
OSTI Identifier: