skip to main content

DOE PAGESDOE PAGES

Title: High-resolution mass spectrometric analysis of biomass pyrolysis vapors

Vapors generated from the pyrolysis of lignocellulosic biomass are made up of a complex mixture of oxygenated compounds. Direct analysis of these vapors provides insight into the mechanisms of depolymerization of cellulose, hemicellulose, and lignin as well as insight into reactions that may occur during condensation of pyrolysis vapors into bio-oil. Studies utilizing pyrolysis molecular beam mass spectrometry have provided valuable information regarding the chemical composition of pyrolysis vapors. Mass spectrometers generally employed with these instruments have low mass resolution of approximately a mass unit. The presence of chemical species with identical unit mass but differing elemental formulas cannot be resolved with these instruments and are therefore detected as a single ion. In this study we analyzed the pyrolysis vapors of several biomass sources using a high-resolution double focusing mass spectrometer. High-resolution analysis of pyrolysis vapors allowed for speciation of several compounds that would be detected as a single ion with unit mass resolution. Lastly, these data not only provide greater detail into the composition of pyrolysis vapors but also highlight differences between vapors generated from multiple biomass feedstocks.
Authors:
 [1] ;  [1] ;  [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Report Number(s):
NREL/JA-5400-67170
Journal ID: ISSN 0165-2370
Grant/Contract Number:
AC36-08GO28308
Type:
Accepted Manuscript
Journal Name:
Journal of Analytical and Applied Pyrolysis
Additional Journal Information:
Journal Volume: 124; Journal ID: ISSN 0165-2370
Publisher:
Elsevier
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies Office (EE-3B)
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; biomass; pyrolysis; high-resolution mass spectrometry; biofuel
OSTI Identifier:
1351157
Alternate Identifier(s):
OSTI ID: 1413768