DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular dynamics modeling of PPTA crystallite mechanical properties in the presence of defects

Abstract

Here, the mechanical properties of PPTA crystallites, the fundamental building blocks of aramid polymer fibers such as Kevlar® and Twaron®, are studied here using molecular dynamics simulations. The ReaxFF interatomic potential is employed to study crystallite failure via covalent and hydrogen bond rupture in constant strain-rate tensile loading simulations. Emphasis is placed on analyzing how chain-end defects in the crystallite influence its mechanical response and fracture strength. Chain-end defects are found to affect the behavior of nearby chains in a region of the PPTA crystallite that is small relative to the typical crystallite size in manufactured aramid fibers. The central Csingle bondN bond along the backbone chain is identified as the weakest in the PPTA polymer chain backbone in dynamic strain-to-failure simulations of the crystallite. It is found that clustering of chain-ends leads to reduced crystallite strength and crystallite failure via hydrogen bond rupture and chain sliding, whereas randomly scattered defects impact the strength less and failure is by covalent bond rupture and chain scission. The axial crystallite modulus increases with increasing chain length and is independent of chain-end defect locations. On the basis of these findings, a theoretical model is proposed to predict the axial modulus as a functionmore » of chain length.« less

Authors:
ORCiD logo [1];  [2];  [3]
  1. Univ. of California, Berkeley, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1351138
Alternate Identifier(s):
OSTI ID: 1396502
Report Number(s):
LLNL-JRNL-717003
Journal ID: ISSN 0032-3861
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Polymer
Additional Journal Information:
Journal Volume: 114; Journal Issue: C; Journal ID: ISSN 0032-3861
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 36 MATERIALS SCIENCE; Kevlar®; Aramid fibers; elastic modulus; defects; molecular dynamics; reactive potentials

Citation Formats

Mercer, Brian, Zywicz, Edward, and Papadopoulos, Panayiotis. Molecular dynamics modeling of PPTA crystallite mechanical properties in the presence of defects. United States: N. p., 2017. Web. doi:10.1016/j.polymer.2017.03.012.
Mercer, Brian, Zywicz, Edward, & Papadopoulos, Panayiotis. Molecular dynamics modeling of PPTA crystallite mechanical properties in the presence of defects. United States. https://doi.org/10.1016/j.polymer.2017.03.012
Mercer, Brian, Zywicz, Edward, and Papadopoulos, Panayiotis. Sat . "Molecular dynamics modeling of PPTA crystallite mechanical properties in the presence of defects". United States. https://doi.org/10.1016/j.polymer.2017.03.012. https://www.osti.gov/servlets/purl/1351138.
@article{osti_1351138,
title = {Molecular dynamics modeling of PPTA crystallite mechanical properties in the presence of defects},
author = {Mercer, Brian and Zywicz, Edward and Papadopoulos, Panayiotis},
abstractNote = {Here, the mechanical properties of PPTA crystallites, the fundamental building blocks of aramid polymer fibers such as Kevlar® and Twaron®, are studied here using molecular dynamics simulations. The ReaxFF interatomic potential is employed to study crystallite failure via covalent and hydrogen bond rupture in constant strain-rate tensile loading simulations. Emphasis is placed on analyzing how chain-end defects in the crystallite influence its mechanical response and fracture strength. Chain-end defects are found to affect the behavior of nearby chains in a region of the PPTA crystallite that is small relative to the typical crystallite size in manufactured aramid fibers. The central Csingle bondN bond along the backbone chain is identified as the weakest in the PPTA polymer chain backbone in dynamic strain-to-failure simulations of the crystallite. It is found that clustering of chain-ends leads to reduced crystallite strength and crystallite failure via hydrogen bond rupture and chain sliding, whereas randomly scattered defects impact the strength less and failure is by covalent bond rupture and chain scission. The axial crystallite modulus increases with increasing chain length and is independent of chain-end defect locations. On the basis of these findings, a theoretical model is proposed to predict the axial modulus as a function of chain length.},
doi = {10.1016/j.polymer.2017.03.012},
journal = {Polymer},
number = C,
volume = 114,
place = {United States},
year = {Sat Mar 11 00:00:00 EST 2017},
month = {Sat Mar 11 00:00:00 EST 2017}
}

Journal Article:

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

X-ray diffraction study of poly(p-phenylene terephthalamide) fibres
journal, September 1974


Direct observation of structure in high-modulus aromatic fibers
journal, January 1977

  • Dobb, M. G.; Johnson, D. J.; Saville, B. P.
  • Journal of Polymer Science: Polymer Symposia, Vol. 58, Issue 1
  • DOI: 10.1002/polc.5070580117

Supramolecular structure of a high-modulus polyaromatic fiber (Kevlar 49)
journal, December 1977

  • Dobb, M. G.; Johnson, D. J.; Saville, B. P.
  • Journal of Polymer Science: Polymer Physics Edition, Vol. 15, Issue 12
  • DOI: 10.1002/pol.1977.180151212

Morphology of poly(p-phenylene terephthalamide) fibers
journal, October 1983

  • Panar, M.; Avakian, P.; Blume, R. C.
  • Journal of Polymer Science: Polymer Physics Edition, Vol. 21, Issue 10
  • DOI: 10.1002/pol.1983.180211006

The relationship between the physical structure and the microscopic deformation and failure processes of poly(p-phenylene terephthalamide) fibers
journal, September 1983

  • Morgan, Roger J.; Pruneda, Cesar O.; Steele, Wayne J.
  • Journal of Polymer Science: Polymer Physics Edition, Vol. 21, Issue 9
  • DOI: 10.1002/pol.1983.180210913

On the morphology of aromatic polyamide fibers (Kevlar, Kevlar-49, and PRD-49)
journal, January 1983

  • Li, L. S.; Allard, L. F.; Bigelow, W. C.
  • Journal of Macromolecular Science, Part B, Vol. 22, Issue 2
  • DOI: 10.1080/00222348308215504

Chain orientation distribution and elastic properties of poly (p-phenylene terephthalamide), a “rigid rod” polymer
journal, January 1977

  • Northolt, M. G.; van Aartsen, J. J.
  • Journal of Polymer Science: Polymer Symposia, Vol. 58, Issue 1
  • DOI: 10.1002/polc.5070580120

Elastic extension of an oriented crystalline fibre
journal, February 1985


Structure–property relation in poly(p-phenylene terephthalamide) (PPTA) fibers
journal, June 2001


Computer simulation of aromatic polyesters including molecular dynamics
journal, January 1992


Elastic Moduli and Molecular Structures of Several Crystalline Polymers, Including Aromatic Polyamides
journal, March 1977

  • Tashiro, Kohji; Kobayashi, Masamichi; Tadokoro, Hiroyuki
  • Macromolecules, Vol. 10, Issue 2
  • DOI: 10.1021/ma60056a033

Thermal expansion and temperature dependence of elastic moduli of aromatic polyamides
journal, November 1994

  • Lacks, Daniel J.; Rutledge, Gregory C.
  • Macromolecules, Vol. 27, Issue 24
  • DOI: 10.1021/ma00102a031

Structure and properties of crystalline polymers
journal, February 1984


Molecular simulation of compressive failure in poly(p-phenylene teraphthalamide) crystals
journal, November 1996


Filament-Level Modeling of Aramid-Based High-Performance Structural Materials
journal, November 2011

  • Grujicic, M.; Bell, W. C.; Glomski, P. S.
  • Journal of Materials Engineering and Performance, Vol. 20, Issue 8
  • DOI: 10.1007/s11665-010-9786-y

Multi-length scale computational derivation of Kevlar® yarn-level material model
journal, February 2011

  • Grujicic, M.; Glomski, P. S.; Pandurangan, B.
  • Journal of Materials Science, Vol. 46, Issue 14
  • DOI: 10.1007/s10853-011-5389-8

Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar®-Fiber-Reinforced Polymer-Matrix Composites
journal, August 2012

  • Grujicic, M.; Pandurangan, B.; Snipes, J. S.
  • Journal of Materials Engineering and Performance, Vol. 22, Issue 3
  • DOI: 10.1007/s11665-012-0329-6

Molecular-Level Study of the Effect of Prior Axial Compression/Torsion on the Axial-Tensile Strength of PPTA Fibers
journal, July 2013

  • Grujicic, M.; Yavari, R.; Ramaswami, S.
  • Journal of Materials Engineering and Performance, Vol. 22, Issue 11
  • DOI: 10.1007/s11665-013-0648-2

Axial-Compressive Behavior, Including Kink-Band Formation and Propagation, of Single p -Phenylene Terephthalamide (PPTA) Fibers
journal, January 2013

  • Grujicic, M.; Ramaswami, S.; Snipes, J. S.
  • Advances in Materials Science and Engineering, Vol. 2013
  • DOI: 10.1155/2013/329549

The effect of plain-weaving on the mechanical properties of warp and weft p-phenylene terephthalamide (PPTA) fibers/yarns
journal, August 2014


ReaxFF:  A Reactive Force Field for Hydrocarbons
journal, October 2001

  • van Duin, Adri C. T.; Dasgupta, Siddharth; Lorant, Francois
  • The Journal of Physical Chemistry A, Vol. 105, Issue 41
  • DOI: 10.1021/jp004368u

ReaxFF SiO Reactive Force Field for Silicon and Silicon Oxide Systems
journal, May 2003

  • van Duin, Adri C. T.; Strachan, Alejandro; Stewman, Shannon
  • The Journal of Physical Chemistry A, Vol. 107, Issue 19
  • DOI: 10.1021/jp0276303

Development and Validation of a ReaxFF Reactive Force Field for Fe/Al/Ni Alloys: Molecular Dynamics Study of Elastic Constants, Diffusion, and Segregation
journal, November 2012

  • Shin, Yun Kyung; Kwak, Hyunwook; Zou, Chenyu
  • The Journal of Physical Chemistry A, Vol. 116, Issue 49
  • DOI: 10.1021/jp308507x

Development of the ReaxFF Reactive Force Field for Describing Transition Metal Catalyzed Reactions, with Application to the Initial Stages of the Catalytic Formation of Carbon Nanotubes
journal, January 2005

  • Nielson, Kevin D.; van Duin, Adri C. T.; Oxgaard, Jonas
  • The Journal of Physical Chemistry A, Vol. 109, Issue 3
  • DOI: 10.1021/jp046244d

ReaxFF- l g: Correction of the ReaxFF Reactive Force Field for London Dispersion, with Applications to the Equations of State for Energetic Materials
journal, October 2011

  • Liu, Lianchi; Liu, Yi; Zybin, Sergey V.
  • The Journal of Physical Chemistry A, Vol. 115, Issue 40
  • DOI: 10.1021/jp201599t

The effect of time step, thermostat, and strain rate on ReaxFF simulations of mechanical failure in diamond, graphene, and carbon nanotube
journal, June 2015

  • Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.
  • Journal of Computational Chemistry, Vol. 36, Issue 21
  • DOI: 10.1002/jcc.23970

Tearing Graphene Sheets From Adhesive Substrates Produces Tapered Nanoribbons
journal, May 2010


Ripping Graphene: Preferred Directions
journal, December 2011

  • Kim, Kwanpyo; Artyukhov, Vasilii I.; Regan, William
  • Nano Letters, Vol. 12, Issue 1
  • DOI: 10.1021/nl203547z

Mechanical properties of graphyne
journal, November 2011


Extended graphynes: simple scaling laws for stiffness, strength and fracture
journal, January 2012

  • Cranford, Steven W.; Brommer, Dieter B.; Buehler, Markus J.
  • Nanoscale, Vol. 4, Issue 24
  • DOI: 10.1039/c2nr31644g

Multiparadigm Modeling of Dynamical Crack Propagation in Silicon Using a Reactive Force Field
journal, March 2006


Modeling failure mechanisms of poly(p-phenylene terephthalamide) fiber using reactive potentials
journal, November 2015


An ab Initio CFF93 All-Atom Force Field for Polycarbonates
journal, April 1994

  • Sun, Huai; Mumby, Stephen J.; Maple, Jon R.
  • Journal of the American Chemical Society, Vol. 116, Issue 7
  • DOI: 10.1021/ja00086a030

Detailed atomistic simulation of oriented pseudocrystalline polymers and application to a stiff-chain aramid
journal, April 1991


Calculation of mechanical properties of poly(p-phenylene terephthalamide) by atomistic modelling
journal, January 1991


Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


A unified formulation of the constant temperature molecular dynamics methods
journal, July 1984

  • Nosé, Shuichi
  • The Journal of Chemical Physics, Vol. 81, Issue 1
  • DOI: 10.1063/1.447334

Canonical dynamics: Equilibrium phase-space distributions
journal, March 1985


Constant pressure molecular dynamics algorithms
journal, September 1994

  • Martyna, Glenn J.; Tobias, Douglas J.; Klein, Michael L.
  • The Journal of Chemical Physics, Vol. 101, Issue 5
  • DOI: 10.1063/1.467468

Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene
journal, November 2010


Charge equilibration for molecular dynamics simulations
journal, April 1991

  • Rappe, Anthony K.; Goddard, William A.
  • The Journal of Physical Chemistry, Vol. 95, Issue 8
  • DOI: 10.1021/j100161a070

Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques
journal, January 2012

  • Aktulga, Hasan Metin; Pandit, Sagar A.; van Duin, Adri C. T.
  • SIAM Journal on Scientific Computing, Vol. 34, Issue 1
  • DOI: 10.1137/100808599

The virial theorem and stress calculation in molecular dynamics
journal, February 1979

  • Tsai, D. H.
  • The Journal of Chemical Physics, Vol. 70, Issue 3
  • DOI: 10.1063/1.437577

Elastic modulus in the crystalline region of poly(p-phenylene terephthalamide)
journal, June 1976


Paracrystallinity-modulus relationships in kevlar aramid fibers
journal, March 1985


Relationship between structure and mechanical properties for aramid fibres
journal, January 1992

  • Young, R. J.; Lu, D.; Day, R. J.
  • Journal of Materials Science, Vol. 27, Issue 20
  • DOI: 10.1007/BF00541602

X-ray study of lattice tensile properties of fully extended aromatic polyamide fibers over a wide temperature range
journal, February 1987

  • Ii, Tadaoki.; Tashiro, Kohji.; Kobayashi, Masamichi.
  • Macromolecules, Vol. 20, Issue 2
  • DOI: 10.1021/ma00168a020

The Ultimate Strength and Stiffness of Polymers
journal, August 1995


ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation
journal, February 2008

  • Chenoweth, Kimberly; van Duin, Adri C. T.; Goddard, William A.
  • The Journal of Physical Chemistry A, Vol. 112, Issue 5
  • DOI: 10.1021/jp709896w

Structure and hydrogen bond dynamics of water–dimethyl sulfoxide mixtures by computer simulations
journal, May 1993

  • Luzar, Alenka; Chandler, David
  • The Journal of Chemical Physics, Vol. 98, Issue 10
  • DOI: 10.1063/1.464521

Dynamical Behavior of Anion−Water and Water−Water Hydrogen Bonds in Aqueous Electrolyte Solutions:  A Molecular Dynamics Study
journal, April 2003

  • Chandra, Amalendu
  • The Journal of Physical Chemistry B, Vol. 107, Issue 16
  • DOI: 10.1021/jp022147d

Microstructural developments of poly (p-phenylene terephthalamide) fibers during heat treatment process: a review
journal, September 2014


Chain Ends and the Ultimate Strength of Polyethylene Fibers
journal, February 2016


Works referencing / citing this record: