DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantum Corrections in Nanoplasmonics: Shape, Scale, and Material

Abstract

The classical treatment of plasmonics is insufficient at the nanometer-scale due to quantum mechanical surface phenomena. Here, an extension of the classical paradigm is reported which rigorously remedies this deficiency through the incorporation of first-principles surface response functions—the Feibelman d parameters—in general geometries. Several analytical results for the leading-order plasmonic quantum corrections are obtained in a first-principles setting; particularly, a clear separation of the roles of shape, scale, and material is established. The utility of the formalism is illustrated by the derivation of a modified sum rule for complementary structures, a rigorous reformulation of Kreibig’s phenomenological damping prescription, and an account of the small-scale resonance shifting of simple and noble metal nanostructures.

Authors:
 [1];  [2];  [3];  [1];  [3]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics
  2. Univ. Bordeaux, Talence (France); Centre National de la Recherche Scientifique (CNRS), Talence (France)
  3. Technical Univ. of Denmark, Lyngby (Denmark). Center for Nanostructured Graphene, and Dept. of Micro- and Nanotechnology
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1470504
Alternate Identifier(s):
OSTI ID: 1351126
Grant/Contract Number:  
SC0001299; FG02-09ER46577
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 118; Journal Issue: 15; Related Information: S3TEC partners with Massachusetts Institute of Technology (lead); Boston College; Oak Ridge National Laboratory; Rensselaer Polytechnic Institute; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 74 ATOMIC AND MOLECULAR PHYSICS

Citation Formats

Christensen, Thomas, Yan, Wei, Jauho, Antti-Pekka, Soljačić, Marin, and Mortensen, N. Asger. Quantum Corrections in Nanoplasmonics: Shape, Scale, and Material. United States: N. p., 2017. Web. doi:10.1103/PhysRevLett.118.157402.
Christensen, Thomas, Yan, Wei, Jauho, Antti-Pekka, Soljačić, Marin, & Mortensen, N. Asger. Quantum Corrections in Nanoplasmonics: Shape, Scale, and Material. United States. https://doi.org/10.1103/PhysRevLett.118.157402
Christensen, Thomas, Yan, Wei, Jauho, Antti-Pekka, Soljačić, Marin, and Mortensen, N. Asger. Tue . "Quantum Corrections in Nanoplasmonics: Shape, Scale, and Material". United States. https://doi.org/10.1103/PhysRevLett.118.157402. https://www.osti.gov/servlets/purl/1470504.
@article{osti_1470504,
title = {Quantum Corrections in Nanoplasmonics: Shape, Scale, and Material},
author = {Christensen, Thomas and Yan, Wei and Jauho, Antti-Pekka and Soljačić, Marin and Mortensen, N. Asger},
abstractNote = {The classical treatment of plasmonics is insufficient at the nanometer-scale due to quantum mechanical surface phenomena. Here, an extension of the classical paradigm is reported which rigorously remedies this deficiency through the incorporation of first-principles surface response functions—the Feibelman d parameters—in general geometries. Several analytical results for the leading-order plasmonic quantum corrections are obtained in a first-principles setting; particularly, a clear separation of the roles of shape, scale, and material is established. The utility of the formalism is illustrated by the derivation of a modified sum rule for complementary structures, a rigorous reformulation of Kreibig’s phenomenological damping prescription, and an account of the small-scale resonance shifting of simple and noble metal nanostructures.},
doi = {10.1103/PhysRevLett.118.157402},
journal = {Physical Review Letters},
number = 15,
volume = 118,
place = {United States},
year = {Tue Apr 11 00:00:00 EDT 2017},
month = {Tue Apr 11 00:00:00 EDT 2017}
}

Journal Article:

Citation Metrics:
Cited by: 99 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Surface features in quantum plasmonics. (a) Schematic of equilibrium and induced densities, n(r) and ρ(r), (distinct scales) plotted along a coordinate line, r$_n̂$, normal to an -oriented surface ∂Ω which delimits the ionic boundary of a metallic domain Ω, see inset. Both n(r) and ρ(r) may extend beyondmore »Ω; d is the centroid of ρ(r). (b) The leading-order differences between classical [local response, ε$_{m,d}$; induced surface density σ(∂Ω)] and quantum accounts [nonlocal response, ε(r, r)'; induced density ρ($\mathbb{R}^3$)] of the plasmonic response of a surface may be bridged by introducing nonclassical contributions due to surface dipole and current densities, π(r) and K(r), proportional to the Feibelman parameters d and d, respectively, which originate from a dipole expansion of ρ(r).« less

Save / Share:

Works referenced in this record:

Effective relaxation time in small spheres: Diffuse surface scattering
journal, December 1984


Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters
journal, June 2011

  • Giannini, Vincenzo; Fernández-Domínguez, Antonio I.; Heck, Susannah C.
  • Chemical Reviews, Vol. 111, Issue 6
  • DOI: 10.1021/cr1002672

Nonlocal Response of Metallic Nanospheres Probed by Light, Electrons, and Atoms
journal, January 2014

  • Christensen, Thomas; Yan, Wei; Raza, Søren
  • ACS Nano, Vol. 8, Issue 2
  • DOI: 10.1021/nn406153k

Classical and quantum plasmonics in graphene nanodisks: Role of edge states
journal, December 2014


First-principles study of surface plasmons on Ag(111) and H/Ag(111)
journal, December 2011


Robust Subnanometric Plasmon Ruler by Rescaling of the Nonlocal Optical Response
journal, June 2013


Multipole plasmons and their disappearance in few-nanometre silver nanoparticles
journal, November 2015

  • Raza, Søren; Kadkhodazadeh, Shima; Christensen, Thomas
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9788

Antennas for light
journal, February 2011


Blue shift of the Mie plasma frequency in Ag clusters and particles
journal, September 1993

  • Tiggesbäumker, Josef; Köller, Lars; Meiwes-Broer, Karl-Heinz
  • Physical Review A, Vol. 48, Issue 3
  • DOI: 10.1103/PhysRevA.48.R1749

Graphene Plasmonics: A Platform for Strong Light–Matter Interactions
journal, August 2011

  • Koppens, Frank H. L.; Chang, Darrick E.; García de Abajo, F. Javier
  • Nano Letters, Vol. 11, Issue 8
  • DOI: 10.1021/nl201771h

A generalized non-local optical response theory for plasmonic nanostructures
journal, May 2014

  • Mortensen, N. A.; Raza, S.; Wubs, M.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4809

Comment on ‘‘Surface plasmon dispersion of Ag’’
journal, January 1994


Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism
journal, May 1976


Plasmonic Properties of Metallic Nanoparticles: The Effects of Size Quantization
journal, December 2011

  • Townsend, Emily; Bryant, Garnett W.
  • Nano Letters, Vol. 12, Issue 1
  • DOI: 10.1021/nl2037613

Which resonances in small metallic nanoparticles are plasmonic?
journal, November 2014


Dielectric function and plasma resonances of small metal particles
journal, December 1975

  • Genzel, L.; Martin, T. P.; Kreibig, U.
  • Zeitschrift f�r Physik B Condensed Matter and Quanta, Vol. 21, Issue 4
  • DOI: 10.1007/BF01325393

An embedding approach for surface calculations
journal, March 1984


Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS
journal, January 2013


The limitation of electron mean free path in small silver particles
journal, August 1969

  • Kreibig, U.; Fragstein, C. v.
  • Zeitschrift f�r Physik, Vol. 224, Issue 4
  • DOI: 10.1007/BF01393059

Quantum plasmon resonances of individual metallic nanoparticles
journal, March 2012

  • Scholl, Jonathan A.; Koh, Ai Leen; Dionne, Jennifer A.
  • Nature, Vol. 483, Issue 7390
  • DOI: 10.1038/nature10904

Ultimate limit of field confinement by surface plasmon polaritons
journal, January 2015


Ab initio nanoplasmonics: The impact of atomic structure
journal, October 2014


Nonlocal optical response in metallic nanostructures
journal, April 2015


Surface-plasmon dispersion and size dependence of Mie resonance: Silver versus simple metals
journal, October 1993


Plasmonics for extreme light concentration and manipulation
journal, February 2010

  • Schuller, Jon A.; Barnard, Edward S.; Cai, Wenshan
  • Nature Materials, Vol. 9, Issue 3
  • DOI: 10.1038/nmat2630

Probing the Ultimate Limits of Plasmonic Enhancement
journal, August 2012


Influence of the Electron Charge Distribution on Surface-Plasmon Dispersion
journal, January 1970


Quantum mechanical effects in plasmonic structures with subnanometre gaps
journal, June 2016

  • Zhu, Wenqi; Esteban, Ruben; Borisov, Andrei G.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11495

Charge-Tunable Quantum Plasmons in Colloidal Semiconductor Nanocrystals
journal, December 2013

  • Schimpf, Alina M.; Thakkar, Niket; Gunthardt, Carolyn E.
  • ACS Nano, Vol. 8, Issue 1
  • DOI: 10.1021/nn406126u

Surface plasmon excitation of objects with arbitrary shape and dielectric constant
journal, October 1989


Optical Constants of the Noble Metals
journal, December 1972


Nonlocal response in thin-film waveguides: Loss versus nonlocality and breaking of complementarity
journal, September 2013


Surface Plasmons and Nonlocality: A Simple Model
journal, August 2013


Theory of Metal Surfaces: Charge Density and Surface Energy
journal, June 1970


Red shift of surface plasmons in small metal particles
journal, December 1982


Landau damping of surface plasmons in metal nanostructures
journal, December 2016


Optical absorption of small metallic particles
journal, June 1985


Quantum size effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy
journal, December 1992


Looking from both sides
journal, February 2013


Core Polarization in the Optical Response of Metal Clusters: Generalized Time-Dependent Density-Functional Theory
journal, February 1997


Green's function surface-integral method for nonlocal response of plasmonic nanowires in arbitrary dielectric environments
journal, October 2013


Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers
journal, January 2013

  • Teperik, Tatiana V.; Nordlander, Peter; Aizpurua, Javier
  • Optics Express, Vol. 21, Issue 22
  • DOI: 10.1364/OE.21.027306

Fundamental Limits to Extinction by Metallic Nanoparticles
journal, March 2014


Surface plasmon resonances of arbitrarily shaped nanometallic structures in the small-screening-length limit
journal, July 2016

  • Schnitzer, Ory; Giannini, Vincenzo; Maier, Stefan A.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 472, Issue 2191
  • DOI: 10.1098/rspa.2016.0258

Sum rules for surface plasmon frequencies
journal, September 1996


Surface electronic structure: Embedded self-consistent calculations
journal, April 1988


Influence of a polarizable medium on the nonlocal optical response of a metal surface
journal, November 1995


Spatial Nonlocality in the Optical Response of Metal Nanoparticles
journal, September 2011

  • David, Christin; García de Abajo, F. Javier
  • The Journal of Physical Chemistry C, Vol. 115, Issue 40
  • DOI: 10.1021/jp204261u

Optical Properties of Noble Metal Clusters as a Function of the Size: Comparison between Experiments and a Semi-Quantal Theory
journal, February 2006


Quantum-Spillover-Enhanced Surface-Plasmonic Absorption at the Interface of Silver and High-Index Dielectrics
journal, November 2015


Unusual resonances in nanoplasmonic structures due to nonlocal response
journal, September 2011


Revealing the quantum regime in tunnelling plasmonics
journal, November 2012

  • Savage, Kevin J.; Hawkeye, Matthew M.; Esteban, Rubén
  • Nature, Vol. 491, Issue 7425
  • DOI: 10.1038/nature11653

Numerical simulation of electron energy loss near inhomogeneous dielectrics
journal, December 1997


Size Dependence of the Optical Response of Spherical Sodium Clusters
journal, February 1995


Dynamical screening at simple-metal surfaces
journal, November 1987


Projected Dipole Model for Quantum Plasmonics
journal, September 2015


Calculation of corrections to Fresnel optics from density response
journal, July 1986


Quantum plasmonics: from jellium models to ab initio calculations
journal, January 2016

  • Varas, Alejandro; García-González, Pablo; Feist, Johannes
  • Nanophotonics, Vol. 5, Issue 3
  • DOI: 10.1515/nanoph-2015-0141

Optical properties of pure and core-shell noble-metal nanoclusters from TDDFT: The influence of the atomic structure
journal, October 2011


A General Non-Local Theory for the Electromagnetic Response of a Small Metal Particle
journal, August 1982


The normal modes at the surface of simple metals
journal, May 1991


Surface electromagnetic fields
journal, January 1982


Surface plasmon in metallic nanoparticles: Renormalization effects due to electron-hole excitations
journal, October 2006

  • Weick, Guillaume; Ingold, Gert-Ludwig; Jalabert, Rodolfo A.
  • Physical Review B, Vol. 74, Issue 16
  • DOI: 10.1103/PhysRevB.74.165421

The Surface Plasmon Resonance of Free and Embedded Ag-Clusters in the Size Range 1,5 nm < D < 30 nm
journal, October 1998


The normal modes at the surface of simple metals
journal, May 1990


Plasmonic Properties of Metallic Nanoparticles: The Effects of Size Quantization
conference, January 2011

  • Townsend, Emily; Bryant, Garnett W.
  • Quantum Electronics and Laser Science Conference, CLEO:2011 - Laser Applications to Photonic Applications
  • DOI: 10.1364/qels.2011.qthc2

Quantum mechanical effects in plasmonic structures with subnanometre gaps.
journalarticle, January 2016

  • Zhu, Wenqi; Esteban, Ruben; Borisov, Andrei G.
  • Springer Science and Business Media LLC
  • DOI: 10.17863/cam.27782

Optical absorption of small metallic particles
journal, June 1985


Foundations of Potential Theory
journal, December 1930

  • Kellogg, O. D.
  • Monatshefte für Mathematik und Physik, Vol. 37, Issue 1, p. A40-A41
  • DOI: 10.1007/bf01696855

Graphene plasmonics: A platform for strong light-matter interaction
text, January 2011


Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS
text, January 2012


Nonlocal response in thin-film waveguides: loss versus nonlocality and breaking of complementarity
text, January 2013


Ab-initio nanoplasmonics: The impact of atomic structure
text, January 2014


Projected-Dipole Model for Quantum Plasmonics
text, January 2015


Multipole plasmons and their disappearance in few-nanometer silver nanoparticles
text, January 2015


Landau damping of surface plasmons in metal nanostructures
text, January 2016


Surface plasmon in metallic nanoparticles: renormalization effects due to electron-hole excitations
text, January 2006


Works referencing / citing this record:

Strong Light–Matter Interactions Enabled by Polaritons in Atomically Thin Materials
journal, January 2020

  • Gonçalves, P. A. D.; Stenger, Nicolas; Cox, Joel D.
  • Advanced Optical Materials, Vol. 8, Issue 5
  • DOI: 10.1002/adom.201901473

Plasmon–emitter interactions at the nanoscale
journal, January 2020

  • Gonçalves, P. A. D.; Christensen, Thomas; Rivera, Nicholas
  • Nature Communications, Vol. 11, Issue 1
  • DOI: 10.1038/s41467-019-13820-z

Absence of unidirectionally propagating surface plasmon-polaritons at nonreciprocal metal-dielectric interfaces
journal, February 2020


A general theoretical and experimental framework for nanoscale electromagnetism
journal, December 2019


Enhanced ponderomotive force in graphene due to interband resonance
journal, July 2019


Probing the ultimate plasmon confinement limits with a van der Waals heterostructure
journal, April 2018

  • Alcaraz Iranzo, David; Nanot, Sébastien; Dias, Eduardo J. C.
  • Science, Vol. 360, Issue 6386
  • DOI: 10.1126/science.aar8438

On the origin of nonlocal damping in plasmonic monomers and dimers
journal, September 2017

  • Tserkezis, Christos; Yan, Wei; Hsieh, Wenting
  • International Journal of Modern Physics B, Vol. 31, Issue 24
  • DOI: 10.1142/s0217979217400057

Plasmonics simulations including nonlocal effects using a boundary element method approach
journal, September 2017

  • Trügler, Andreas; Hohenester, Ulrich; García de Abajo, F. Javier
  • International Journal of Modern Physics B, Vol. 31, Issue 24
  • DOI: 10.1142/s0217979217400070

Strong light-matter coupling in quantum chemistry and quantum photonics
journal, September 2018


Probing graphene’s nonlocality with singular metasurfaces
journal, February 2020

  • Galiffi, Emanuele; Huidobro, Paloma A.; Gonçalves, Paulo André D.
  • Nanophotonics, Vol. 9, Issue 2
  • DOI: 10.1515/nanoph-2019-0323

Nonlocal and Size-Dependent Dielectric Function for Plasmonic Nanoparticles
journal, July 2019

  • Huang, Kai-Jian; Qin, Shui-Jie; Zhang, Zheng-Ping
  • Applied Sciences, Vol. 9, Issue 15
  • DOI: 10.3390/app9153083

A General Theoretical and Experimental Framework for Nanoscale Electromagnetism
conference, January 2019


Probing the Ultimate Plasmon Confinement Limits with a Van der Waals heterostructure
text, January 2018


Probing Nonlocal Effects in Metals with Graphene Plasmons
text, January 2018


Plasmon-Emitter Interactions at the Nanoscale
text, January 2019


Probing Graphene's Nonlocality with Singular Metasurfaces
text, January 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.