DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design of photovoltaics for modules with 50% efficiency

Abstract

Abstract We describe a spectrum splitting solar module design approach using ensembles of 2–20 subcells with bandgaps optimized for the AM 1.5D spectrum. Device physics calculations and experimental data determine radiative efficiency parameters for III ‐V compound semiconductor subcells and enable modification of conventional detailed balance calculations to predict module efficiency while retaining computational speed for a wide search of the design space. Accounting for nonideal absorption and recombination rates due to realistic material imperfections allows us to identify the minimum subcell quantity, quality, electrical connection configuration, and concentration required for 50% module efficiency with realistic optical losses and modeled contact resistance losses. We predict a module efficiency of 50% or greater will be possible with 7–10 electrically independent subcells in a spectral splitting optic at 300–500 suns concentration, assuming a 90% optical efficiency and 98% electrical efficiency, provided the subcells can achieve an average external radiative efficiency of 3–5% and a short circuit current that is at least 90% of the ideal. In examining spectrum splitting solar cells with both series‐connected and electrically independent subcells, we identify a new design trade‐off independent of the challenges of fabricating optimal bandgap combinations. Series‐connected ensembles, having a single set of electrical contacts,more » are less sensitive to lumped series resistance losses than ensembles where each subcells are contacted independently. By contrast, ensembles with electrically independent subcells can achieve lower radiative losses when the subcells are designed for good optical confinement. Distributing electrically independent subcells in a concentrating receiver module allows flexibility in subcell selection and fabrication, and can achieve ultra‐high efficiency with conventional III ‐V cell technology.« less

Authors:
 [1];  [1];  [1];  [2];  [3];  [1]
  1. California Institute of Technology Pasadena California USA
  2. E O Lawrence Berkeley National Laboratory Berkeley California USA
  3. Tulane University New Orleans Louisiana USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1351001
Alternate Identifier(s):
OSTI ID: 1351002
Resource Type:
Published Article
Journal Name:
Energy Science & Engineering
Additional Journal Information:
Journal Name: Energy Science & Engineering Journal Volume: 5 Journal Issue: 2; Journal ID: ISSN 2050-0505
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Warmann, Emily C., Flowers, Cristofer, Lloyd, John, Eisler, Carissa N., Escarra, Matthew D., and Atwater, Harry A. Design of photovoltaics for modules with 50% efficiency. United Kingdom: N. p., 2017. Web. doi:10.1002/ese3.155.
Warmann, Emily C., Flowers, Cristofer, Lloyd, John, Eisler, Carissa N., Escarra, Matthew D., & Atwater, Harry A. Design of photovoltaics for modules with 50% efficiency. United Kingdom. https://doi.org/10.1002/ese3.155
Warmann, Emily C., Flowers, Cristofer, Lloyd, John, Eisler, Carissa N., Escarra, Matthew D., and Atwater, Harry A. Mon . "Design of photovoltaics for modules with 50% efficiency". United Kingdom. https://doi.org/10.1002/ese3.155.
@article{osti_1351001,
title = {Design of photovoltaics for modules with 50% efficiency},
author = {Warmann, Emily C. and Flowers, Cristofer and Lloyd, John and Eisler, Carissa N. and Escarra, Matthew D. and Atwater, Harry A.},
abstractNote = {Abstract We describe a spectrum splitting solar module design approach using ensembles of 2–20 subcells with bandgaps optimized for the AM 1.5D spectrum. Device physics calculations and experimental data determine radiative efficiency parameters for III ‐V compound semiconductor subcells and enable modification of conventional detailed balance calculations to predict module efficiency while retaining computational speed for a wide search of the design space. Accounting for nonideal absorption and recombination rates due to realistic material imperfections allows us to identify the minimum subcell quantity, quality, electrical connection configuration, and concentration required for 50% module efficiency with realistic optical losses and modeled contact resistance losses. We predict a module efficiency of 50% or greater will be possible with 7–10 electrically independent subcells in a spectral splitting optic at 300–500 suns concentration, assuming a 90% optical efficiency and 98% electrical efficiency, provided the subcells can achieve an average external radiative efficiency of 3–5% and a short circuit current that is at least 90% of the ideal. In examining spectrum splitting solar cells with both series‐connected and electrically independent subcells, we identify a new design trade‐off independent of the challenges of fabricating optimal bandgap combinations. Series‐connected ensembles, having a single set of electrical contacts, are less sensitive to lumped series resistance losses than ensembles where each subcells are contacted independently. By contrast, ensembles with electrically independent subcells can achieve lower radiative losses when the subcells are designed for good optical confinement. Distributing electrically independent subcells in a concentrating receiver module allows flexibility in subcell selection and fabrication, and can achieve ultra‐high efficiency with conventional III ‐V cell technology.},
doi = {10.1002/ese3.155},
journal = {Energy Science & Engineering},
number = 2,
volume = 5,
place = {United Kingdom},
year = {Mon Apr 10 00:00:00 EDT 2017},
month = {Mon Apr 10 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/ese3.155

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Lateral spectrum splitting concentrator photovoltaics: direct measurement of component and submodule efficiency: LSSCPV components and submodule measurement
journal, September 2011

  • Wang, Xiaoting; Waite, Nick; Murcia, Paola
  • Progress in Photovoltaics: Research and Applications, Vol. 20, Issue 2
  • DOI: 10.1002/pip.1194

Recombination lifetime of In[sub x]Ga[sub 1−x]As alloys used in thermophotovoltaic converters
conference, January 1999

  • Ahrenkiel, R. K.; Ellingson, R.; Johnston, S.
  • Fourth NREL conference on thermophotovoltaic generation of electricity, AIP Conference Proceedings
  • DOI: 10.1063/1.57807

Performance of an Al 0.92 Ga 0.08 As/Al 0.14 Ga 0.86 As solar cell in concentrated sunlight
journal, July 1978

  • Moon, R. L.; James, L. W.; VanderPlas, H. A.
  • Applied Physics Letters, Vol. 33, Issue 2
  • DOI: 10.1063/1.90272

Solar cell efficiency tables (version 40): Solar cell efficiency tables (version 40)
journal, July 2012

  • Green, Martin A.; Emery, Keith; Hishikawa, Yoshihiro
  • Progress in Photovoltaics: Research and Applications, Vol. 20, Issue 5
  • DOI: 10.1002/pip.2267

Solar cell generations over 40% efficiency: Solar cell generations over 40% efficiency
journal, April 2012

  • King, R. R.; Bhusari, D.; Larrabee, D.
  • Progress in Photovoltaics: Research and Applications, Vol. 20, Issue 6
  • DOI: 10.1002/pip.1255

Photovoltaic performance enhancement by external recycling of photon emission
journal, January 2013

  • Braun, Avi; Katz, Eugene A.; Feuermann, Daniel
  • Energy & Environmental Science, Vol. 6, Issue 5
  • DOI: 10.1039/c3ee40377g

Spectrum splitting photovoltaics: Polyhedral specular reflector design for ultra-high efficiency modules
conference, June 2013

  • Eisler, Carissa N.; Kosten, Emily D.; Warmann, Emily C.
  • 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)
  • DOI: 10.1109/PVSC.2013.6744502

Solar cell efficiency tables (version 47): Solar cell efficiency tables
journal, November 2015

  • Green, Martin A.; Emery, Keith; Hishikawa, Yoshihiro
  • Progress in Photovoltaics: Research and Applications, Vol. 24, Issue 1
  • DOI: 10.1002/pip.2728

Spectrum-splitting photovoltaics: Holographic spectrum splitting in eight-junction, ultra-high efficiency module
conference, June 2013

  • Escarra, Matthew D.; Darbe, Sunita; Warmann, Emily C.
  • 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)
  • DOI: 10.1109/PVSC.2013.6744503

Very high efficiency solar cell modules
journal, January 2009

  • Barnett, Allen; Kirkpatrick, Douglas; Honsberg, Christiana
  • Progress in Photovoltaics: Research and Applications, Vol. 17, Issue 1, p. 75-83
  • DOI: 10.1002/pip.852

A comparison of theoretical efficiencies of multi-junction concentrator solar cells
journal, September 2008

  • Kurtz, Sarah; Myers, Daryl; McMahon, W. E.
  • Progress in Photovoltaics: Research and Applications, Vol. 16, Issue 6
  • DOI: 10.1002/pip.830

Designing and prototyping the polyhedral specular reflector, a spectrum-splitting module with projected >50% efficiency
conference, June 2015

  • Eisler, Carissa N.; Flowers, Cristofer A.; Espinet, Pilar
  • 2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC), 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC)
  • DOI: 10.1109/PVSC.2015.7356406

GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies
journal, May 2010

  • Yoon, Jongseung; Jo, Sungjin; Chun, Ik Su
  • Nature, Vol. 465, Issue 7296
  • DOI: 10.1038/nature09054

Photonic design principles for ultrahigh-efficiency photovoltaics
journal, February 2012

  • Polman, Albert; Atwater, Harry A.
  • Nature Materials, Vol. 11, Issue 3
  • DOI: 10.1038/nmat3263

Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells
journal, August 1980

  • Henry, C. H.
  • Journal of Applied Physics, Vol. 51, Issue 8
  • DOI: 10.1063/1.328272

27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination
conference, June 2011

  • Kayes, Brendan M.; Nie, Hui; Twist, Rose
  • 2011 37th IEEE Photovoltaic Specialists Conference (PVSC)
  • DOI: 10.1109/PVSC.2011.6185831

Flash technique for GaAs concentrator solar cell measurement
journal, January 1981


Some Thermodynamics of Photochemical Systems
journal, June 1967

  • Ross, Robert T.
  • The Journal of Chemical Physics, Vol. 46, Issue 12
  • DOI: 10.1063/1.1840606

42.3% Efficient InGaP/GaAs/InGaAs concentrators using bifacial epigrowth
conference, June 2011


Radiative efficiency of state-of-the-art photovoltaic cells
journal, September 2011

  • Green, Martin A.
  • Progress in Photovoltaics: Research and Applications, Vol. 20, Issue 4, p. 472-476
  • DOI: 10.1002/pip.1147

40% efficient sunlight to electricity conversion: Sunlight to electricity conversion efficiency above 40%
journal, March 2015

  • Green, Martin A.; Keevers, Mark J.; Thomas, Ian
  • Progress in Photovoltaics: Research and Applications, Vol. 23, Issue 6
  • DOI: 10.1002/pip.2612

Band parameters for III–V compound semiconductors and their alloys
journal, June 2001

  • Vurgaftman, I.; Meyer, J. R.; Ram-Mohan, L. R.
  • Journal of Applied Physics, Vol. 89, Issue 11, p. 5815-5875
  • DOI: 10.1063/1.1368156

Design improvements for the polyhedral specular reflector spectrum-splitting module for ultra-high efficiency (>50%)
conference, June 2014

  • Eisler, Carissa N.; Warmann, Emily C.; Flowers, Cristofer A.
  • 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC), 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)
  • DOI: 10.1109/PVSC.2014.6925367

Solar cell efficiency tables (Version 45): Solar cell efficiency tables
journal, December 2014

  • Green, Martin A.; Emery, Keith; Hishikawa, Yoshihiro
  • Progress in Photovoltaics: Research and Applications, Vol. 23, Issue 1
  • DOI: 10.1002/pip.2573

Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
journal, March 1961

  • Shockley, William; Queisser, Hans J.
  • Journal of Applied Physics, Vol. 32, Issue 3, p. 510-519
  • DOI: 10.1063/1.1736034

Electrically independent subcircuits for a seven-junction spectrum splitting photovoltaic module
conference, June 2014

  • Flowers, Cristofer A.; Eisler, Carissa N.; Atwater, Harry A.
  • 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC), 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)
  • DOI: 10.1109/PVSC.2014.6925165

Investigation of selective junctions using a newly developed tunnel current model for solar cell applications
journal, October 2015


43% Sunlight to Electricity Conversion Efficiency Using CPV
journal, July 2016


Solar cell efficiency tables (version 46): Solar cell efficiency tables (version 46)
journal, June 2015

  • Green, Martin A.; Emery, Keith; Hishikawa, Yoshihiro
  • Progress in Photovoltaics: Research and Applications, Vol. 23, Issue 7
  • DOI: 10.1002/pip.2637

Optimization by Simulated Annealing
journal, May 1983


Validated front contact grid simulation for GaAs solar cells under concentrated sunlight
journal, December 2010

  • Steiner, Marc; Philipps, Simon P.; Hermle, Martin
  • Progress in Photovoltaics: Research and Applications, Vol. 19, Issue 1
  • DOI: 10.1002/pip.989

Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review
journal, October 2004


Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells
journal, July 2013

  • Geisz, J. F.; Steiner, M. A.; García, I.
  • Applied Physics Letters, Vol. 103, Issue 4
  • DOI: 10.1063/1.4816837

Carrier lifetime in p-doped InGaAs and InGaAsP
conference, January 1998

  • Sermage, B.; Benchimol, J. L.; Cohen, G. M.
  • Conference Proceedings. 1998 International Conference on Indium Phosphide and Related Materials (Cat. No.98CH36129)
  • DOI: 10.1109/ICIPRM.1998.712768