DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Laser-pulse compression using magnetized plasmas

Abstract

Proposals to reach the next generation of laser intensities through Raman or Brillouin backscattering have centered on optical frequencies. Higher frequencies are beyond the range of such methods mainly due to the wave damping that accompanies the higher-density plasmas necessary for compressing higher frequency lasers. However, we find that an external magnetic field transverse to the direction of laser propagation can reduce the required plasma density. Using parametric interactions in magnetized plasmas to mediate pulse compression, both reduces the wave damping and alleviates instabilities, thereby enabling higher frequency or lower intensity pumps to produce pulses at higher intensities and longer durations. Finally, in addition to these theoretical advantages, our method in which strong uniform magnetic fields lessen the need for high-density uniform plasmas also lessens key engineering challenges or at least exchanges them for different challenges.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  2. Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
Publication Date:
Research Org.:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); US Air Force Office of Scientific Research (AFOSR)
OSTI Identifier:
1350075
Alternate Identifier(s):
OSTI ID: 1345284
Report Number(s):
PPPL-5300
Journal ID: ISSN 2470-0045; PLEEE8; TRN: US1700676
Grant/Contract Number:  
NA0002948; FA9550-15-1-0391; AC02-09CH11466
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review E
Additional Journal Information:
Journal Volume: 95; Journal Issue: 2; Journal ID: ISSN 2470-0045
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Shi, Yuan, Qin, Hong, and Fisch, Nathaniel J. Laser-pulse compression using magnetized plasmas. United States: N. p., 2017. Web. doi:10.1103/PhysRevE.95.023211.
Shi, Yuan, Qin, Hong, & Fisch, Nathaniel J. Laser-pulse compression using magnetized plasmas. United States. https://doi.org/10.1103/PhysRevE.95.023211
Shi, Yuan, Qin, Hong, and Fisch, Nathaniel J. Tue . "Laser-pulse compression using magnetized plasmas". United States. https://doi.org/10.1103/PhysRevE.95.023211. https://www.osti.gov/servlets/purl/1350075.
@article{osti_1350075,
title = {Laser-pulse compression using magnetized plasmas},
author = {Shi, Yuan and Qin, Hong and Fisch, Nathaniel J.},
abstractNote = {Proposals to reach the next generation of laser intensities through Raman or Brillouin backscattering have centered on optical frequencies. Higher frequencies are beyond the range of such methods mainly due to the wave damping that accompanies the higher-density plasmas necessary for compressing higher frequency lasers. However, we find that an external magnetic field transverse to the direction of laser propagation can reduce the required plasma density. Using parametric interactions in magnetized plasmas to mediate pulse compression, both reduces the wave damping and alleviates instabilities, thereby enabling higher frequency or lower intensity pumps to produce pulses at higher intensities and longer durations. Finally, in addition to these theoretical advantages, our method in which strong uniform magnetic fields lessen the need for high-density uniform plasmas also lessens key engineering challenges or at least exchanges them for different challenges.},
doi = {10.1103/PhysRevE.95.023211},
journal = {Physical Review E},
number = 2,
volume = 95,
place = {United States},
year = {Tue Feb 28 00:00:00 EST 2017},
month = {Tue Feb 28 00:00:00 EST 2017}
}

Journal Article:

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Amplification of ultra-short light pulses by ion collective modes in plasmas: The use of damage-less optics for high laser intensities
journal, May 2014


Key plasma parameters for resonant backward Raman amplification in plasma
journal, May 2014


Measurements of ultrastrong magnetic fields during relativistic laser–plasma interactions
journal, May 2002

  • Tatarakis, M.; Gopal, A.; Watts, I.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1469027

Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime
journal, May 2006

  • Andreev, A. A.; Riconda, C.; Tikhonchuk, V. T.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2201896

Effect of the transverse magnetic field on spatiotemporal dynamics of quadruple Gaussian laser beam in plasma in weakly relativistic and ponderomotive regime
journal, December 2016

  • Vij, Shivani; Gill, Tarsem Singh; Aggarwal, Munish
  • Physics of Plasmas, Vol. 23, Issue 12
  • DOI: 10.1063/1.4972087

Wave-breaking amplitudes of relativistic upper-hybrid oscillations in a cold magnetized plasma
journal, June 2016

  • Karmakar, Mithun; Maity, Chandan; Chakrabarti, Nikhil
  • Physics of Plasmas, Vol. 23, Issue 6
  • DOI: 10.1063/1.4953607

Stochastic ion heating by a lower hybrid wave
journal, January 1978


Plasma KrF laser pulse compressor
journal, June 1982

  • Capjack, C. E.; James, C. R.; McMullin, J. N.
  • Journal of Applied Physics, Vol. 53, Issue 6
  • DOI: 10.1063/1.331267

Signatures of the Self-Similar Regime of Strongly Coupled Stimulated Brillouin Scattering for Efficient Short Laser Pulse Amplification
journal, February 2016


Distinguishing Raman from strongly coupled Brillouin amplification for short pulses
journal, May 2016

  • Jia, Qing; Barth, Ido; Edwards, Matthew R.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4951027

Damping of Large-Amplitude Plasma Waves Propagating Perpendicular to the Magnetic Field
journal, May 1983


Kilotesla Magnetic Field due to a Capacitor-Coil Target Driven by High Power Laser
journal, January 2013

  • Fujioka, Shinsuke; Zhang, Zhe; Ishihara, Kazuhiro
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01170

High Temperatures in Inertial Confinement Fusion Radiation Cavities Heated with 0.35 μ m Light
journal, October 1994


Operating regime for a backward Raman laser amplifier in preformed plasma
journal, August 2003

  • Clark, Daniel S.; Fisch, Nathaniel J.
  • Physics of Plasmas, Vol. 10, Issue 8
  • DOI: 10.1063/1.1590667

Aerodynamic focusing of high-density aerosols
journal, October 2014


Numerical simulation of Raman and Brillouin laser-pulse amplification in a magnetized plasma
journal, April 2016


Geometrical Optics of Dense Aerosols: Forming Dense Plasma Slabs
journal, October 2013


Microholography of Living Organisms
journal, October 1982


Laser-driven platform for generation and characterization of strong quasi-static magnetic fields
journal, August 2015


Plasma laser pulse amplifier using induced Raman or Brillouin processes
journal, January 1979

  • Milroy, R. D.; Capjack, C. E.; James, C. R.
  • Physics of Fluids, Vol. 22, Issue 10
  • DOI: 10.1063/1.862481

Laser propagation in dense magnetized plasma
journal, November 2016


Brillouin and Raman scattering of an extraordinary mode in a magnetized plasma
journal, January 1980

  • Grebogi, Celso; Liu, C. S.
  • Physics of Fluids, Vol. 23, Issue 7
  • DOI: 10.1063/1.863146

Megagauss Magnetic Field Generation and Plasma Jet Formation on Solid Targets Irradiated by an Ultraintense Picosecond Laser Pulse
journal, July 1998


Encapsulation and Diffraction-Pattern-Correction Methods to Reduce the Effect of Damage in X-Ray Diffraction Imaging of Single Biological Molecules
journal, May 2007


Ultra-fast and ultra-intense x-ray sciences: first results from the Linac Coherent Light Source free-electron laser
journal, August 2013

  • Bostedt, C.; Bozek, J. D.; Bucksbaum, P. H.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 46, Issue 16
  • DOI: 10.1088/0953-4075/46/16/164003

Stochastic ion heating by a lower hybrid wave: II
journal, January 1979

  • Karney, Charles F. F.
  • Physics of Fluids, Vol. 22, Issue 11
  • DOI: 10.1063/1.862512

Reaching the Nonlinear Regime of Raman Amplification of Ultrashort Laser Pulses
journal, February 2005


Compression of X-ray Free Electron Laser Pulses to Attosecond Duration
journal, November 2015

  • Sadler, James D.; Nathvani, Ricky; Oleśkiewicz, Piotr
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep16755

The Nike KrF laser facility: Performance and initial target experiments
journal, May 1996

  • Obenschain, S. P.; Bodner, S. E.; Colombant, D.
  • Physics of Plasmas, Vol. 3, Issue 5
  • DOI: 10.1063/1.871661

Fast Compression of Laser Beams to Highly Overcritical Powers
journal, May 1999


Three‐ and four‐wave interactions in plasmas
journal, June 1978

  • Boyd, T. J. M.; Turner, J. G.
  • Journal of Mathematical Physics, Vol. 19, Issue 6
  • DOI: 10.1063/1.523842

Amplification of Ultrashort Laser Pulses by a Resonant Raman Scheme in a Gas-Jet Plasma
journal, April 2004


Compression of powerful x-ray pulses to attosecond durations by stimulated Raman backscattering in plasmas
journal, February 2007


Potential for biomolecular imaging with femtosecond X-ray pulses
journal, August 2000

  • Neutze, Richard; Wouts, Remco; van der Spoel, David
  • Nature, Vol. 406, Issue 6797
  • DOI: 10.1038/35021099

Temperature dependence of seed pulse amplitude and density grating in Brillouin amplification
journal, February 2016

  • Lehmann, G.; Spatschek, K. H.
  • Physics of Plasmas, Vol. 23, Issue 2
  • DOI: 10.1063/1.4941966

Amplification of Ultrashort Laser Pulses by Brillouin Backscattering in Plasmas
journal, July 2013


Spectral characteristics of ultra-short laser pulses in plasma amplifiers
journal, August 2013

  • Riconda, C.; Weber, S.; Lancia, L.
  • Physics of Plasmas, Vol. 20, Issue 8
  • DOI: 10.1063/1.4818893

Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas
journal, August 2004


On the Bernstein–Landau paradox
journal, July 1997

  • Sukhorukov, A. I.; Stubbe, P.
  • Physics of Plasmas, Vol. 4, Issue 7
  • DOI: 10.1063/1.872229

Experimental Evidence of Short Light Pulse Amplification Using Strong-Coupling Stimulated Brillouin Scattering in the Pump Depletion Regime
journal, January 2010


Works referencing / citing this record:

Laser-plasma interactions in magnetized environment
journal, May 2018

  • Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5017980

Amplification of mid-infrared lasers via backscattering in magnetized plasmas
journal, July 2019

  • Shi, Yuan; Fisch, Nathaniel J.
  • Physics of Plasmas, Vol. 26, Issue 7
  • DOI: 10.1063/1.5099513

X-Ray Amplification by Stimulated Brillouin Scattering
text, January 2017


Laser Amplification in Strongly-Magnetized Plasma
text, January 2018