skip to main content


Title: Carbon nanotube supported PdAg nanoparticles for electrocatalytic oxidation of glycerol in anion exchange membrane fuel cells

Electro-oxidation of alcohol is the key reaction occurring at the anode of a direct alcohol fuel cell (DAFC), in which both reaction kinetics (rate) and selectivity (to deep oxidation products) need improvement to obtain higher power density and fuel utilization for a more efficient DAFC. We recently found that a PdAg bimetallic nanoparticle catalyst is more efficient than Pd for alcohol oxidation: Pd can facilitate deprotonation of alcohol in a base electrolyte, while Ag can promote intermediate aldehyde oxidation and cleavage of C-single bondC bond of C 3 species to C 2 species. Furthermore, a combination of the two active sites (Pd and Ag) with two different functions, can simultaneously improve the reaction rates and deeper oxidation products of alcohols. In this continuing work, Pd, Ag mono, and bimetallic nanoparticles supported on carbon nanotubes (Ag/CNT, Pd/CNT, Pd 1Ag 1/CNT, and Pd 1Ag 3/CNT) were prepared using an aqueous-phase reduction method; they served as working catalysts for studying electrocatalytic oxidation of glycerol in an anion-exchange membrane-based direct glycerol fuel cell. Combined XRD, TEM, and HAADF-STEM analyses performed to fully characterize as-prepared catalysts suggested that they have small particle sizes: 2.0 nm for Pd/CNT, 2.3 nm for PdAg/CNT, 2.4 nm for PdAgmore » 3/CNT, and 13.9 nm for Ag/CNT. XPS further shows that alloying with Ag results in more metal state Pd presented on the surface, and this may be related to their higher direct glycerol fuel cell (DGFC) performances. Single DGFC performance and product analysis results show that PdAg bimetallic nanoparticles can not only improve the glycerol reaction rate so that higher power output can be achieved, but also facilitate deep oxidation of glycerol so that a higher faradaic efficiency and fuel utilization can be achieved along with optimal reaction conditions (increased base-to-fuel ratio). Half-cell electrocatalytic activity measurement and single fuel cell product analysis of different glycerol oxidation intermediates, including C 3: glycerate, tartronate, mesoxalate, and lactate; C 2: glycolate and oxalate, over PdAg/CNT catalyst was further conducted and produced deeper insight into the synergistic effects and reaction pathways of bimetallic PdAg catalysts in glycerol electrocatalytic oxidation.« less
 [1] ;  [1] ;  [2] ;  [1] ;  [3]
  1. Iowa State Univ., Ames, IA (United States)
  2. (China)
  3. Ames Lab. and Iowa State Univ., Ames, IA (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 0926-3373; PII: S0926337317301947
Grant/Contract Number:
CBET-1501124 and 1159448; AC02-07CH11358
Accepted Manuscript
Journal Name:
Applied Catalysis. B, Environmental
Additional Journal Information:
Journal Volume: 210; Journal Issue: C; Journal ID: ISSN 0926-3373
Research Org:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org:
Country of Publication:
United States
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; biomass renewables; glycerol oxidation; anion-exchange membrane fuel cell; PdAg nanoparticles; electrocatalysis
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1414784