DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The B-type channel is a major route for iron entry into the ferroxidase center and central cavity of bacterioferritin

Abstract

Bacterioferritin is a bacterial iron storage and detoxification protein that is capable of forming a ferric oxyhydroxide mineral core within its central cavity. To do this, iron must traverse the bacterioferritin protein shell, which is expected to occur through one or more of the channels through the shell identified by structural studies. The size and negative electrostatic potential of the 24 B-type channels suggest that they could provide a route for iron into bacterioferritin. Residues at the B-type channel (Asn-34, Glu-66, Asp-132, and Asp-139) of E. coli bacterioferritin were substituted to determine if they are important for iron core formation. A significant decrease in the rates of initial oxidation of Fe(II) at the ferroxidase center and subsequent iron mineralization was observed for the D132F variant. The crystal structure of this variant shows that substitution of residue 132 with phenylalanine caused a steric blockage of the B-type channel and no other material structural perturbation. Here, we conclude that the B-type channel is a major route for iron entry into both the ferroxidase center and the iron storage cavity of bacterioferritin.

Authors:
 [1];  [1];  [2];  [2];  [1];  [1]
  1. Univ. of British Columbia, Vancouver, BC (Canada)
  2. Univ. of East Anglia, Norwich (United Kingdom)
Publication Date:
Research Org.:
Univ. of British Columbia, Vancouver, BC (Canada); Univ. of East Anglia, Norwich (United Kingdom)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), Biological and Environmental Research (BER); National Inst. of Health (NIH) (United States); Canadian Foundation for Innovation (Canada); United Kingdom Biotechnology and Biological Sciences Research Council; Leverhulme Trust (United Kingdom); Natural Science and Engineering Research Council (Canada); Canadian Institutes of Health Research (Canada); Canadian Blood Services (Canada)
OSTI Identifier:
1349650
Grant/Contract Number:  
83/B14704; BB/D001943/1; EM-2014-088
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Biological Chemistry
Additional Journal Information:
Journal Volume: 290; Journal Issue: 6; Journal ID: ISSN 0021-9258
Publisher:
American Society for Biochemistry and Molecular Biology
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; Escherichia coli (E. coli); ferritin; iron; site-directed mutagenesis; X-ray crystallography; bacterioferritin; iron storage; iron core

Citation Formats

Wong, Steve G., Grigg, Jason C., Le Brun, Nick E., Moore, Geoffrey R., Murphy, Michael E. P., and Mauk, A. Grant. The B-type channel is a major route for iron entry into the ferroxidase center and central cavity of bacterioferritin. United States: N. p., 2014. Web. doi:10.1074/jbc.M114.623082.
Wong, Steve G., Grigg, Jason C., Le Brun, Nick E., Moore, Geoffrey R., Murphy, Michael E. P., & Mauk, A. Grant. The B-type channel is a major route for iron entry into the ferroxidase center and central cavity of bacterioferritin. United States. https://doi.org/10.1074/jbc.M114.623082
Wong, Steve G., Grigg, Jason C., Le Brun, Nick E., Moore, Geoffrey R., Murphy, Michael E. P., and Mauk, A. Grant. Mon . "The B-type channel is a major route for iron entry into the ferroxidase center and central cavity of bacterioferritin". United States. https://doi.org/10.1074/jbc.M114.623082. https://www.osti.gov/servlets/purl/1349650.
@article{osti_1349650,
title = {The B-type channel is a major route for iron entry into the ferroxidase center and central cavity of bacterioferritin},
author = {Wong, Steve G. and Grigg, Jason C. and Le Brun, Nick E. and Moore, Geoffrey R. and Murphy, Michael E. P. and Mauk, A. Grant},
abstractNote = {Bacterioferritin is a bacterial iron storage and detoxification protein that is capable of forming a ferric oxyhydroxide mineral core within its central cavity. To do this, iron must traverse the bacterioferritin protein shell, which is expected to occur through one or more of the channels through the shell identified by structural studies. The size and negative electrostatic potential of the 24 B-type channels suggest that they could provide a route for iron into bacterioferritin. Residues at the B-type channel (Asn-34, Glu-66, Asp-132, and Asp-139) of E. coli bacterioferritin were substituted to determine if they are important for iron core formation. A significant decrease in the rates of initial oxidation of Fe(II) at the ferroxidase center and subsequent iron mineralization was observed for the D132F variant. The crystal structure of this variant shows that substitution of residue 132 with phenylalanine caused a steric blockage of the B-type channel and no other material structural perturbation. Here, we conclude that the B-type channel is a major route for iron entry into both the ferroxidase center and the iron storage cavity of bacterioferritin.},
doi = {10.1074/jbc.M114.623082},
journal = {Journal of Biological Chemistry},
number = 6,
volume = 290,
place = {United States},
year = {Mon Dec 15 00:00:00 EST 2014},
month = {Mon Dec 15 00:00:00 EST 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Core Formation in Escherichia coli Bacterioferritin Requires a Functional Ferroxidase Center
journal, December 2003

  • Baaghil, Suzanne; Lewin, Allison; Moore, Geoffrey R.
  • Biochemistry, Vol. 42, Issue 47
  • DOI: 10.1021/bi035253u

Kinetic and structural characterization of an intermediate in the biomineralization of bacterioferritin
journal, October 1993


The Iron Oxidation and Hydrolysis Chemistry of Escherichia coli Bacterioferritin
journal, April 2000

  • Yang, Xiaoke; Le Brun, Nick E.; Thomson, Andrew J.
  • Biochemistry, Vol. 39, Issue 16
  • DOI: 10.1021/bi992631f

Structural Basis for Iron Mineralization by Bacterioferritin
journal, May 2009

  • Crow, Allister; Lawson, Tamara L.; Lewin, Allison
  • Journal of the American Chemical Society, Vol. 131, Issue 19
  • DOI: 10.1021/ja8093444

NEW EMBO MEMBER'S REVIEW: Ferritins, iron uptake and storage from the bacterioferritin viewpoint
journal, May 2003


The nature of the di-iron site in the bacterioferritin from Desulfovibrio desulfuricans
journal, March 2003

  • Macedo, Sofia; Romão, Célia V.; Mitchell, Edward
  • Nature Structural & Molecular Biology, Vol. 10, Issue 4
  • DOI: 10.1038/nsb909

Structural Characterization of Bacterioferritin from Blastochloris viridis
journal, October 2012


Ferrous Ion Binding to Recombinant Human H-Chain Ferritin. An Isothermal Titration Calorimetry Study
journal, September 2002

  • Bou-Abdallah, Fadi; Arosio, Paolo; Santambrogio, Paolo
  • Biochemistry, Vol. 41, Issue 37
  • DOI: 10.1021/bi020215g

Facilitated Diffusion of Iron(II) and Dioxygen Substrates into Human H-Chain Ferritin. A Fluorescence and Absorbance Study Employing the Ferroxidase Center Substitution Y34W
journal, December 2008

  • Bou-Abdallah, Fadi; Zhao, Guanghua; Biasiotto, Giorgio
  • Journal of the American Chemical Society, Vol. 130, Issue 52
  • DOI: 10.1021/ja8054035

Evidence that residues exposed on the three-fold channels have active roles in the mechanism of ferritin iron incorporation
journal, July 1996

  • Levi, Sonia; Santambrogio, Paolo; Corsi, Barbara
  • Biochemical Journal, Vol. 317, Issue 2
  • DOI: 10.1042/bj3170467

Calculated electrostatic gradients in recombinant human H-chain ferritin
journal, May 1998


Identification of the ferroxidase centre of Escherichia coli bacterioferritin
journal, December 1995

  • Le Brun, N. E.; Andrews, S. C.; Guest, J. R.
  • Biochemical Journal, Vol. 312, Issue 2
  • DOI: 10.1042/bj3120385

2.6 Å resolution crystal structure of the bacterioferritin from Azotobacter vinelandii
journal, July 2004


Effect of phosphate on bacterioferritin-catalysed iron(II) oxidation
journal, December 2003

  • Aitken-Rogers, Helen; Singleton, Chloe; Lewin, Allison
  • JBIC Journal of Biological Inorganic Chemistry, Vol. 9, Issue 2
  • DOI: 10.1007/s00775-003-0504-1

The binding of haem and zinc in the 1.9 Å X-ray structure of Escherichia coli bacterioferritin
journal, October 2008

  • Willies, Simon C.; Isupov, Michail N.; Garman, Elspeth F.
  • JBIC Journal of Biological Inorganic Chemistry, Vol. 14, Issue 2
  • DOI: 10.1007/s00775-008-0438-8

XDS
journal, January 2010

  • Kabsch, Wolfgang
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2
  • DOI: 10.1107/S0907444909047337

Scaling and assessment of data quality
journal, December 2005

  • Evans, Philip
  • Acta Crystallographica Section D Biological Crystallography, Vol. 62, Issue 1, p. 72-82
  • DOI: 10.1107/S0907444905036693

An introduction to data reduction: space-group determination, scaling and intensity statistics
journal, March 2011

  • Evans, Philip R.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S090744491003982X

Overview of the CCP 4 suite and current developments
journal, March 2011

  • Winn, Martyn D.; Ballard, Charles C.; Cowtan, Kevin D.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444910045749

Phaser crystallographic software
journal, July 2007

  • McCoy, Airlie J.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
  • Journal of Applied Crystallography, Vol. 40, Issue 4
  • DOI: 10.1107/S0021889807021206

Monitoring and validating active site redox states in protein crystals
journal, June 2011

  • Antonyuk, Svetlana V.; Hough, Michael A.
  • Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, Vol. 1814, Issue 6
  • DOI: 10.1016/j.bbapap.2010.12.017

Refinement of Macromolecular Structures by the Maximum-Likelihood Method
journal, May 1997

  • Murshudov, G. N.; Vagin, A. A.; Dodson, E. J.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 53, Issue 3
  • DOI: 10.1107/S0907444996012255

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

MolProbity : all-atom structure validation for macromolecular crystallography
journal, December 2009

  • Chen, Vincent B.; Arendall, W. Bryan; Headd, Jeffrey J.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 1
  • DOI: 10.1107/S0907444909042073

Electrostatics of nanosystems: Application to microtubules and the ribosome
journal, August 2001

  • Baker, N. A.; Sept, D.; Joseph, S.
  • Proceedings of the National Academy of Sciences, Vol. 98, Issue 18, p. 10037-10041
  • DOI: 10.1073/pnas.181342398

PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations
journal, July 2004

  • Dolinsky, T. J.; Nielsen, J. E.; McCammon, J. A.
  • Nucleic Acids Research, Vol. 32, Issue Web Server, p. W665-W667
  • DOI: 10.1093/nar/gkh381

PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations
journal, May 2007

  • Dolinsky, T. J.; Czodrowski, P.; Li, H.
  • Nucleic Acids Research, Vol. 35, Issue Web Server
  • DOI: 10.1093/nar/gkm276

Comparative Protein Modelling by Satisfaction of Spatial Restraints
journal, December 1993


Four-Fold Channels Are Involved in Iron Diffusion into the Inner Cavity of Plant Ferritin
journal, April 2014

  • Lv, Chenyan; Zhang, Shengli; Zang, Jiachen
  • Biochemistry, Vol. 53, Issue 14
  • DOI: 10.1021/bi500066m

The Crystal Structure of Ferritin from Helicobacter pylori Reveals Unusual Conformational Changes for Iron Uptake
journal, July 2009


Structural heterogeneity of Pseudomonas aeruginosa bacterioferritin
journal, December 1994

  • Moore, G. R.; Kadir, F. H.; al-Massad, F. K.
  • Biochemical Journal, Vol. 304, Issue 2
  • DOI: 10.1042/bj3040493

Crystal structure of the ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus
journal, February 2007

  • Tatur, Jana; Hagen, Wilfred R.; Matias, Pedro M.
  • JBIC Journal of Biological Inorganic Chemistry, Vol. 12, Issue 5
  • DOI: 10.1007/s00775-007-0212-3

Works referencing / citing this record:

Engineering Genetically-Encoded Mineralization and Magnetism via Directed Evolution
journal, November 2016

  • Liu, Xueliang; Lopez, Paola A.; Giessen, Tobias W.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep38019

Routes of iron entry into, and exit from, the catalytic ferroxidase sites of the prokaryotic ferritin Syn Ftn
journal, January 2020

  • Bradley, Justin M.; Pullin, Jacob; Moore, Geoffrey R.
  • Dalton Transactions, Vol. 49, Issue 5
  • DOI: 10.1039/c9dt03570b

Engineering Genetically-Encoded Mineralization and Magnetism via Directed Evolution
journal, November 2016

  • Liu, Xueliang; Lopez, Paola A.; Giessen, Tobias W.
  • Scientific Reports
  • DOI: 10.1101/085233