DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Computational catalyst screening: Scaling, bond-order and catalysis

Abstract

Here, the design of new and better heterogeneous catalysts needed to accommodate the growing demand for energy from renewable sources is an important challenge for coming generations. Most surface catalyzed processes involve a large number of complex reaction networks and the energetics ultimately defines the turn-over-frequency and the selectivity of the process. In order not to get lost in the large quantities of data, simplification schemes that still contain the key elements of the reaction are required. Adsorption and transition state scaling relations constitutes such a scheme that not only maps the reaction relevant information in terms of few parameters but also provides an efficient way of screening for new materials in a continuous multi-dimensional energy space. As with all relations they impose certain restrictions on what can be achieved and in this paper, I show why these limitations exist and how we can change the behavior through an energy-resolved approach that still maintains the screening capabilities needed in computational catalysis.

Authors:
 [1]
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1349301
Alternate Identifier(s):
OSTI ID: 1255478
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Catalysis Today
Additional Journal Information:
Journal Volume: 272; Journal Issue: C; Journal ID: ISSN 0920-5861
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 97 MATHEMATICS AND COMPUTING; DFT; scaling relations; volcano plots

Citation Formats

Abild-Pedersen, Frank. Computational catalyst screening: Scaling, bond-order and catalysis. United States: N. p., 2015. Web. doi:10.1016/j.cattod.2015.08.056.
Abild-Pedersen, Frank. Computational catalyst screening: Scaling, bond-order and catalysis. United States. https://doi.org/10.1016/j.cattod.2015.08.056
Abild-Pedersen, Frank. Thu . "Computational catalyst screening: Scaling, bond-order and catalysis". United States. https://doi.org/10.1016/j.cattod.2015.08.056. https://www.osti.gov/servlets/purl/1349301.
@article{osti_1349301,
title = {Computational catalyst screening: Scaling, bond-order and catalysis},
author = {Abild-Pedersen, Frank},
abstractNote = {Here, the design of new and better heterogeneous catalysts needed to accommodate the growing demand for energy from renewable sources is an important challenge for coming generations. Most surface catalyzed processes involve a large number of complex reaction networks and the energetics ultimately defines the turn-over-frequency and the selectivity of the process. In order not to get lost in the large quantities of data, simplification schemes that still contain the key elements of the reaction are required. Adsorption and transition state scaling relations constitutes such a scheme that not only maps the reaction relevant information in terms of few parameters but also provides an efficient way of screening for new materials in a continuous multi-dimensional energy space. As with all relations they impose certain restrictions on what can be achieved and in this paper, I show why these limitations exist and how we can change the behavior through an energy-resolved approach that still maintains the screening capabilities needed in computational catalysis.},
doi = {10.1016/j.cattod.2015.08.056},
journal = {Catalysis Today},
number = C,
volume = 272,
place = {United States},
year = {Thu Oct 01 00:00:00 EDT 2015},
month = {Thu Oct 01 00:00:00 EDT 2015}
}

Journal Article:

Citation Metrics:
Cited by: 36 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Controlling the catalytic bond-breaking selectivity of Ni surfaces by step blocking
journal, January 2005

  • Vang, Ronnie T.; Honkala, Karoliina; Dahl, Søren
  • Nature Materials, Vol. 4, Issue 2
  • DOI: 10.1038/nmat1311

Exploring the limits: A low-pressure, low-temperature Haber–Bosch process
journal, April 2014


Identification of Non-Precious Metal Alloy Catalysts for Selective Hydrogenation of Acetylene
journal, June 2008


CO adsorption on close-packed transition and noble metal surfaces: trends from ab initio calculations
journal, February 2004

  • Gajdo, Marek; Eichler, Andreas; Hafner, Jürgen
  • Journal of Physics: Condensed Matter, Vol. 16, Issue 8
  • DOI: 10.1088/0953-8984/16/8/001

The nature of the active site in heterogeneous metal catalysis
journal, January 2008

  • Nørskov, Jens K.; Bligaard, Thomas; Hvolbæk, Britt
  • Chemical Society Reviews, Vol. 37, Issue 10
  • DOI: 10.1039/b800260f

CO oxidation on Pd(100) at technologically relevant pressure conditions: First-principles kinetic Monte Carlo study
journal, April 2008


Electronic factors determining the reactivity of metal surfaces
journal, December 1995


Steam Reforming of Hydrocarbons on Noble Metal Catalysts (Part 1): The Catalytic Activity in Methane-Steam Reaction
journal, January 1974

  • Kikuchi, Eiichi; Tanaka, Shigeru; Yamazaki, Yoshihiro
  • Bulletin of The Japan Petroleum Institute, Vol. 16, Issue 2
  • DOI: 10.1627/jpi1959.16.95

Mixed-Metal Pt Monolayer Electrocatalysts for Enhanced Oxygen Reduction Kinetics
journal, September 2005

  • Zhang, Junliang; Vukmirovic, Miomir B.; Sasaki, Kotaro
  • Journal of the American Chemical Society, Vol. 127, Issue 36
  • DOI: 10.1021/ja053695i

Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol
journal, March 2014

  • Studt, Felix; Sharafutdinov, Irek; Abild-Pedersen, Frank
  • Nature Chemistry, Vol. 6, Issue 4
  • DOI: 10.1038/nchem.1873

Interatomic interactions in the effective-medium theory
journal, May 1987


Further considerations on the thermodynamics of chemical equilibria and reaction rates
journal, January 1936


Measuring and Relating the Electronic Structures of Nonmodel Supported Catalytic Materials to Their Performance
journal, February 2009

  • Nikolla, Eranda; Schwank, Johannes; Linic, Suljo
  • Journal of the American Chemical Society, Vol. 131, Issue 7
  • DOI: 10.1021/ja809291e

Alloy catalysts designed from first principles
journal, October 2004

  • Greeley, Jeff; Mavrikakis, Manos
  • Nature Materials, Vol. 3, Issue 11
  • DOI: 10.1038/nmat1223

NO oxidation properties of Pt(111) revealed by ab initio kinetic simulations
journal, March 2005


Scaling Relationships for Adsorption Energies on Transition Metal Oxide, Sulfide, and Nitride Surfaces
journal, June 2008

  • Fernández, Eva M.; Moses, Poul G.; Toftelund, Anja
  • Angewandte Chemie International Edition, Vol. 47, Issue 25
  • DOI: 10.1002/anie.200705739

First principles calculations and experimental insight into methane steam reforming over transition metal catalysts
journal, October 2008


Understanding the Reactivity of Layered Transition-Metal Sulfides: A Single Electronic Descriptor for Structure and Adsorption
journal, October 2014

  • Tsai, Charlie; Chan, Karen; Nørskov, Jens K.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 21
  • DOI: 10.1021/jz5020532

Activity of nickel catalysts for steam reforming of hydrocarbons
journal, November 1973


Assessing the reliability of calculated catalytic ammonia synthesis rates
journal, July 2014


The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis
journal, May 2004


Examining the Linearity of Transition State Scaling Relations
journal, May 2015

  • Plessow, Philipp N.; Abild-Pedersen, Frank
  • The Journal of Physical Chemistry C, Vol. 119, Issue 19
  • DOI: 10.1021/acs.jpcc.5b02055

Scaling relations between adsorption energies for computational screening and design of catalysts
journal, January 2014

  • Montemore, Matthew M.; Medlin, J. Will
  • Catal. Sci. Technol., Vol. 4, Issue 11
  • DOI: 10.1039/C4CY00335G

Scaling relationships for adsorption energies of C2 hydrocarbons on transition metal surfaces
journal, December 2011

  • Jones, Glenn; Studt, Felix; Abild-Pedersen, Frank
  • Chemical Engineering Science, Vol. 66, Issue 24
  • DOI: 10.1016/j.ces.2011.02.050

Identification of the Scaling Relations for Binary Noble-Metal Nanoparticles
journal, February 2013

  • Fu, Qiang; Cao, Xinrui; Luo, Yi
  • The Journal of Physical Chemistry C, Vol. 117, Issue 6
  • DOI: 10.1021/jp311104w

Molecular N2 chemisorption—specific adsorption on step defect sites on Pt surfaces
journal, November 1999

  • Tripa, C. Emil; Zubkov, Tykhon S.; Yates, John T.
  • The Journal of Chemical Physics, Vol. 111, Issue 18
  • DOI: 10.1063/1.480204

Introducing structural sensitivity into adsorption–energy scaling relations by means of coordination numbers
journal, April 2015

  • Calle-Vallejo, Federico; Loffreda, David; Koper, Marc T. M.
  • Nature Chemistry, Vol. 7, Issue 5
  • DOI: 10.1038/nchem.2226

Transition-state scaling relations in zeolite catalysis: influence of framework topology and acid-site reactivity
journal, January 2015

  • Wang, Chuan-Ming; Brogaard, Rasmus Y.; Xie, Zai-Ku
  • Catalysis Science & Technology, Vol. 5, Issue 5
  • DOI: 10.1039/C4CY01692K

Scaling Properties of Adsorption Energies for Hydrogen-Containing Molecules on Transition-Metal Surfaces
journal, July 2007


Study of mixed steam and CO2 reforming of CH4 to syngas on MgO-supported metals
journal, December 1994


The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts
journal, April 2012


Activity Descriptors for CO 2 Electroreduction to Methane on Transition-Metal Catalysts
journal, January 2012

  • Peterson, Andrew A.; Nørskov, Jens K.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 2
  • DOI: 10.1021/jz201461p

Fast Prediction of Selectivity in Heterogeneous Catalysis from Extended Brønsted-Evans-Polanyi Relations: A Theoretical Insight
journal, September 2009

  • Loffreda, David; Delbecq, Françoise; Vigné, Fabienne
  • Angewandte Chemie International Edition, Vol. 48, Issue 47
  • DOI: 10.1002/anie.200902800

Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals
journal, June 2004

  • Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.
  • The Journal of Chemical Physics, Vol. 120, Issue 21
  • DOI: 10.1063/1.1737365

Towards the computational design of solid catalysts
journal, April 2009

  • Nørskov, J.; Bligaard, T.; Rossmeisl, J.
  • Nature Chemistry, Vol. 1, Issue 1, p. 37-46
  • DOI: 10.1038/nchem.121

Special Sites at Noble and Late Transition Metal Catalysts
journal, March 2006


Chemisorption on metal surfaces
journal, October 1990


Role of Steps in N 2 Activation on Ru(0001)
journal, August 1999


Local reactivity of metal overlayers: Density functional theory calculations of Pd on Au
journal, January 2003


CO2-Reforming of Methane over Transition Metals
journal, November 1993


Alloys of platinum and early transition metals as oxygen reduction electrocatalysts
journal, September 2009

  • Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.
  • Nature Chemistry, Vol. 1, Issue 7, p. 552-556
  • DOI: 10.1038/nchem.367

Die katalytische Zersetzung des Nitramids und ihre physikalisch-chemische Bedeutung
journal, January 1924

  • Brönsted, J. N.; Pedersen, Kai
  • Zeitschrift für Physikalische Chemie, Vol. 108U, Issue 1
  • DOI: 10.1515/zpch-1924-10814

Works referencing / citing this record:

A genomic characterisation of monometallic nanoparticles
journal, January 2019

  • Rossi, Kevin; Asara, Gian Giacomo; Baletto, Francesca
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 9
  • DOI: 10.1039/c8cp05720f

Electrostatic Origins of Linear Scaling Relationships at Bifunctional Metal/Oxide Interfaces: A Case Study of Au Nanoparticles on Doped MgO Substrates
journal, November 2018

  • Choksi, Tej; Majumdar, Paulami; Greeley, Jeffrey P.
  • Angewandte Chemie, Vol. 130, Issue 47
  • DOI: 10.1002/ange.201808246

Perspective: On the active site model in computational catalyst screening
journal, January 2017

  • Reuter, Karsten; Plaisance, Craig P.; Oberhofer, Harald
  • The Journal of Chemical Physics, Vol. 146, Issue 4
  • DOI: 10.1063/1.4974931

Electrostatic Origins of Linear Scaling Relationships at Bifunctional Metal/Oxide Interfaces: A Case Study of Au Nanoparticles on Doped MgO Substrates
journal, October 2018

  • Choksi, Tej; Majumdar, Paulami; Greeley, Jeffrey P.
  • Angewandte Chemie International Edition, Vol. 57, Issue 47
  • DOI: 10.1002/anie.201808246

Statistical Analysis and Discovery of Heterogeneous Catalysts Based on Machine Learning from Diverse Published Data
journal, August 2019


In silico high throughput screening of bimetallic and single atom alloys using machine learning and ab initio microkinetic modelling
journal, January 2020

  • Saxena, Shivam; Khan, Tuhin Suvra; Jalid, Fatima
  • Journal of Materials Chemistry A, Vol. 8, Issue 1
  • DOI: 10.1039/c9ta07651d

Predicting metal–metal interactions. II. Accelerating generalized schemes through physical insights
journal, March 2020

  • Choksi, Tej S.; Streibel, Verena; Abild-Pedersen, Frank
  • The Journal of Chemical Physics, Vol. 152, Issue 9
  • DOI: 10.1063/1.5141378

Generic approach to access barriers in dehydrogenation reactions
journal, March 2018


Statistical Analysis and Discovery of Heterogeneous Catalysts Based on Machine Learning from Diverse Published Data
journal, August 2019


A genomic characterization of metallic nanoparticles
text, January 2018


Stability of metallic edges and Fermi-level pinning in transition-metal dichalcogenide nanoribbons
preprint, January 2016