skip to main content

DOE PAGESDOE PAGES

Title: Direct and continuous strain control of catalysts with tunable battery electrode materials

We report a method for using battery electrode materials to directly and continuously control the lattice strain of platinum (Pt) catalyst and thus tune its catalytic activity for the oxygen reduction reaction (ORR). Whereas the common approach of using metal overlayers introduces ligand effects in addition to strain, by electrochemically switching between the charging and discharging status of battery electrodes the change in volume can be precisely controlled to induce either compressive or tensile strain on supported catalysts. Lattice compression and tension induced by the lithium cobalt oxide substrate of ~5% were directly observed in individual Pt nanoparticles with aberration-corrected transmission electron microscopy. As a result, we observed 90% enhancement or 40% suppression in Pt ORR activity under compression or tension, respectively, which is consistent with theoretical predictions.
Authors:
 [1] ;  [1] ;  [2] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [3] ;  [1] ;  [2] ;  [2]
  1. Stanford Univ., Stanford, CA (United States)
  2. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Grant/Contract Number:
AC02-76SF00515
Type:
Accepted Manuscript
Journal Name:
Science
Additional Journal Information:
Journal Volume: 354; Journal Issue: 6315; Journal ID: ISSN 0036-8075
Publisher:
AAAS
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; 25 ENERGY STORAGE
OSTI Identifier:
1349292