skip to main content


Title: Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands

Here, transition metal oxides show great promise as Earth-abundant catalysts for the oxygen evolution reaction in electrochemical water splitting. However, progress in the development of highly active oxide nanostructures is hampered by a lack of knowledge of the location and nature of the active sites. Here we show, through atom-resolved scanning tunnelling microscopy, X-ray spectroscopy and computational modelling, how hydroxyls form from water dissociation at under coordinated cobalt edge sites of cobalt oxide nanoislands. Surprisingly, we find that an additional water molecule acts to promote all the elementary steps of the dissociation process and subsequent hydrogen migration, revealing the important assisting role of a water molecule in its own dissociation process on a metal oxide. Inspired by the experimental findings, we theoretically model the oxygen evolution reaction activity of cobalt oxide nanoislands and show that the nanoparticle metal edges also display favourable adsorption energetics for water oxidation under electrochemical conditions.
 [1] ;  [2] ;  [3] ; ORCiD logo [4] ;  [5] ; ORCiD logo [1] ;  [6] ;  [1]
  1. Aarhus Univ., Aarhus (Denmark)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States); Trinity College Dublin, Dublin (Ireland)
  3. Univ. of Manchester, Manchester (United Kingdom)
  4. Stanford Univ., Stanford, CA (United States)
  5. Institute for Storage Ring Facilities, Aarhus (Denmark)
  6. Univ. of Pennsylvania, Philadelphia, PA (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2041-1723
Nature Publishing Group
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; electrocatalysis; scanning probe microscopy; surfaces, interfaces and thin films
OSTI Identifier: