DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrochemical ammonia synthesis—The selectivity challenge

Abstract

Here, the N2 molecule is particularly inert; the N–N triple bond is one of the most stable in all of chemistry, and in addition, the molecule has no dipole moment and a very low polarizability.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [2]; ORCiD logo [2];  [3];  [2]
  1. Stanford Univ., Stanford, CA (United States)
  2. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. Technical Univ. of Denmark, Lyngby (Denmark)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1349282
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 7; Journal Issue: 1; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Singh, Aayush R., Rohr, Brian A., Schwalbe, Jay A., Cargnello, Matteo, Chan, Karen, Jaramillo, Thomas F., Chorkendorff, Ib, and Nørskov, Jens K. Electrochemical ammonia synthesis—The selectivity challenge. United States: N. p., 2016. Web. doi:10.1021/acscatal.6b03035.
Singh, Aayush R., Rohr, Brian A., Schwalbe, Jay A., Cargnello, Matteo, Chan, Karen, Jaramillo, Thomas F., Chorkendorff, Ib, & Nørskov, Jens K. Electrochemical ammonia synthesis—The selectivity challenge. United States. https://doi.org/10.1021/acscatal.6b03035
Singh, Aayush R., Rohr, Brian A., Schwalbe, Jay A., Cargnello, Matteo, Chan, Karen, Jaramillo, Thomas F., Chorkendorff, Ib, and Nørskov, Jens K. Wed . "Electrochemical ammonia synthesis—The selectivity challenge". United States. https://doi.org/10.1021/acscatal.6b03035. https://www.osti.gov/servlets/purl/1349282.
@article{osti_1349282,
title = {Electrochemical ammonia synthesis—The selectivity challenge},
author = {Singh, Aayush R. and Rohr, Brian A. and Schwalbe, Jay A. and Cargnello, Matteo and Chan, Karen and Jaramillo, Thomas F. and Chorkendorff, Ib and Nørskov, Jens K.},
abstractNote = {Here, the N2 molecule is particularly inert; the N–N triple bond is one of the most stable in all of chemistry, and in addition, the molecule has no dipole moment and a very low polarizability.},
doi = {10.1021/acscatal.6b03035},
journal = {ACS Catalysis},
number = 1,
volume = 7,
place = {United States},
year = {Wed Dec 07 00:00:00 EST 2016},
month = {Wed Dec 07 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 587 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Über die Bildung von Ammoniak den Elementen
journal, April 1905


How a century of ammonia synthesis changed the world
journal, September 2008

  • Erisman, Jan Willem; Sutton, Mark A.; Galloway, James
  • Nature Geoscience, Vol. 1, Issue 10
  • DOI: 10.1038/ngeo325

Reactive Nitrogen and The World: 200 Years of Change
journal, March 2002

  • Galloway, James N.; Cowling, Ellis B.
  • AMBIO: A Journal of the Human Environment, Vol. 31, Issue 2
  • DOI: 10.1579/0044-7447-31.2.64

Towards an ammonia-mediated hydrogen economy?
journal, January 2006


Ammonia as a Suitable Fuel for Fuel Cells
journal, August 2014


Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell
journal, January 2000

  • Kordali, V.; Kyriacou, G.; Lambrou, Ch.
  • Chemical Communications, Issue 17
  • DOI: 10.1039/b004885m

Electrochemical conversion of dinitrogen to ammonia mediated by a complex of fullerene C 60 and γ-cyclodextrin
journal, January 2007

  • Pospíšil, Lubomír; Bulíčková, Jana; Hromadová, Magdaléna
  • Chem. Commun., Issue 22
  • DOI: 10.1039/B701017F

Electrochemical synthesis of ammonia from N2 and H2O based on (Li,Na,K)2CO3–Ce0.8Gd0.18Ca0.02O2−δ composite electrolyte and CoFe2O4 cathode
journal, March 2014

  • Amar, Ibrahim A.; Petit, Christophe T. G.; Mann, Gregory
  • International Journal of Hydrogen Energy, Vol. 39, Issue 9
  • DOI: 10.1016/j.ijhydene.2013.12.177

Synthesis of ammonia directly from wet air using new perovskite oxide La0.8Cs0.2Fe0.8Ni0.2O3-δ as catalyst
journal, March 2014


Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center
journal, December 2005

  • Schrock, Richard R.
  • Accounts of Chemical Research, Vol. 38, Issue 12
  • DOI: 10.1021/ar0501121

Catalytic conversion of nitrogen to ammonia by an iron model complex
journal, September 2013

  • Anderson, John S.; Rittle, Jonathan; Peters, Jonas C.
  • Nature, Vol. 501, Issue 7465
  • DOI: 10.1038/nature12435

A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia
journal, December 2010

  • Arashiba, Kazuya; Miyake, Yoshihiro; Nishibayashi, Yoshiaki
  • Nature Chemistry, Vol. 3, Issue 2
  • DOI: 10.1038/nchem.906

The Yandulov/Schrock Cycle and the Nitrogenase Reaction: Pathways of Nitrogen Fixation Studied by Density Functional Theory
journal, January 2006


A theoretical evaluation of possible transition metal electro-catalysts for N 2 reduction
journal, January 2012

  • Skúlason, Egill; Bligaard, Thomas; Gudmundsdóttir, Sigrídur
  • Phys. Chem. Chem. Phys., Vol. 14, Issue 3
  • DOI: 10.1039/C1CP22271F

Challenges in reduction of dinitrogen by proton and electron transfer
journal, January 2014

  • van der Ham, Cornelis J. M.; Koper, Marc T. M.; Hetterscheid, Dennis G. H.
  • Chem. Soc. Rev., Vol. 43, Issue 15
  • DOI: 10.1039/C4CS00085D

The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations
journal, June 2015

  • Montoya, Joseph H.; Tsai, Charlie; Vojvodic, Aleksandra
  • ChemSusChem, Vol. 8, Issue 13
  • DOI: 10.1002/cssc.201500322

Nanoscale Limitations in Metal Oxide Electrocatalysts for Oxygen Evolution
journal, September 2014

  • Viswanathan, Venkatasubramanian; Pickrahn, Katie L.; Luntz, Alan C.
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl502775u

Exploring the limits: A low-pressure, low-temperature Haber–Bosch process
journal, April 2014


Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center
journal, July 2003


Mechanism of Mo-Dependent Nitrogenase
journal, June 2009


Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage
journal, January 2014

  • Hoffman, Brian M.; Lukoyanov, Dmitriy; Yang, Zhi-Yong
  • Chemical Reviews, Vol. 114, Issue 8
  • DOI: 10.1021/cr400641x

Mechanism of the electrochemical reduction of carbon dioxide at inert electrodes in media of low proton availability
journal, January 1996

  • Gennaro, Armando; Isse, Abdirisak A.; Severin, Maria-Gabriella
  • J. Chem. Soc., Faraday Trans., Vol. 92, Issue 20
  • DOI: 10.1039/FT9969203963

Investigation of N2-fixation on polyaniline electrodes in methanol by electrochemical impedance spectroscopy
journal, December 2010

  • Köleli, Fatih; Röpke, Derya; Aydin, Rezzan
  • Journal of Applied Electrochemistry, Vol. 41, Issue 4
  • DOI: 10.1007/s10800-010-0250-3

Self-Assembled Monolayers of n -Alkanethiols Suppress Hydrogen Evolution and Increase the Efficiency of Rechargeable Iron Battery Electrodes
journal, December 2012

  • Malkhandi, Souradip; Yang, Bo; Manohar, Aswin K.
  • Journal of the American Chemical Society, Vol. 135, Issue 1
  • DOI: 10.1021/ja3095119

Proton transfer dynamics control the mechanism of O2 reduction by a non-precious metal electrocatalyst
journal, May 2016

  • Tse, Edmund C. M.; Barile, Christopher J.; Kirchschlager, Nicholas A.
  • Nature Materials, Vol. 15, Issue 7
  • DOI: 10.1038/nmat4636

Donor-Dependent Kinetics of Interfacial Proton-Coupled Electron Transfer
journal, February 2016

  • Jackson, Megan N.; Surendranath, Yogesh
  • Journal of the American Chemical Society, Vol. 138, Issue 9
  • DOI: 10.1021/jacs.6b00167

Ultralarge area MOS tunnel devices for electron emission
journal, October 2007


Efficient Visible Light Nitrogen Fixation with BiOBr Nanosheets of Oxygen Vacancies on the Exposed {001} Facets
journal, May 2015

  • Li, Hao; Shang, Jian; Ai, Zhihui
  • Journal of the American Chemical Society, Vol. 137, Issue 19
  • DOI: 10.1021/jacs.5b03105

Selective Dinitrogen Conversion to Ammonia Using Water and Visible Light through Plasmon-induced Charge Separation
journal, February 2016

  • Oshikiri, Tomoya; Ueno, Kosei; Misawa, Hiroaki
  • Angewandte Chemie International Edition, Vol. 55, Issue 12
  • DOI: 10.1002/anie.201511189

Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid
journal, April 2016


Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction
journal, June 2013

  • Zhu, Di; Zhang, Linghong; Ruther, Rose E.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3696

The Solubility of Nitrogen and Air in Liquids
journal, April 1984

  • Battino, Rubin; Rettich, Timothy R.; Tominaga, Toshihiro
  • Journal of Physical and Chemical Reference Data, Vol. 13, Issue 2
  • DOI: 10.1063/1.555713

Works referencing / citing this record:

Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water
journal, March 2019


Ammonia Synthesis from Electrocatalytic N 2 Reduction under Ambient Conditions by Fe 2 O 3 Nanorods
journal, September 2018


Anion (O, N, C, and S) vacancies promoted photocatalytic nitrogen fixation
journal, January 2019

  • Mao, Chengliang; Wang, Jiaxian; Zou, Yunjie
  • Green Chemistry, Vol. 21, Issue 11
  • DOI: 10.1039/c9gc01010f

Single molybdenum atom anchored on 2D Ti 2 NO 2 MXene as a promising electrocatalyst for N 2 fixation
journal, January 2019

  • Cheng, Yuwen; Dai, Jianhong; Song, Yan
  • Nanoscale, Vol. 11, Issue 39
  • DOI: 10.1039/c9nr05402b

Metal–organic framework-derived shuttle-like V 2 O 3 /C for electrocatalytic N 2 reduction under ambient conditions
journal, January 2019

  • Zhang, Rong; Han, Jingrui; Zheng, Baozhan
  • Inorganic Chemistry Frontiers, Vol. 6, Issue 2
  • DOI: 10.1039/c8qi01145a

Enhanced Electrocatalytic N 2 Reduction via Partial Anion Substitution in Titanium Oxide–Carbon Composites
journal, July 2019

  • Qin, Qing; Zhao, Yun; Schmallegger, Max
  • Angewandte Chemie International Edition, Vol. 58, Issue 37
  • DOI: 10.1002/anie.201906056

Single molybdenum center supported on N-doped black phosphorus as an efficient electrocatalyst for nitrogen fixation
journal, January 2019

  • Ou, Pengfei; Zhou, Xiao; Meng, Fanchao
  • Nanoscale, Vol. 11, Issue 28
  • DOI: 10.1039/c9nr02586c

A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
journal, May 2019


Direct fabrication of bi-metallic PdRu nanorod assemblies for electrochemical ammonia synthesis
journal, January 2019

  • Wang, Hongjing; Li, Yinghao; Yang, Dandan
  • Nanoscale, Vol. 11, Issue 12
  • DOI: 10.1039/c8nr10398d

Facile, cost-effective plasma synthesis of self-supportive FeS x on Fe foam for efficient electrochemical reduction of N 2 under ambient conditions
journal, January 2019

  • Xiong, Wei; Guo, Zheng; Zhao, Shijun
  • Journal of Materials Chemistry A, Vol. 7, Issue 34
  • DOI: 10.1039/c9ta07790a

Ambient electrocatalytic N 2 reduction to NH 3 by metal fluorides
journal, January 2019

  • Li, Peipei; Liu, Zaichun; Wu, Tongwei
  • Journal of Materials Chemistry A, Vol. 7, Issue 30
  • DOI: 10.1039/c9ta04706a

Doping single transition metal atom into PtTe sheet for catalyzing nitrogen reduction and hydrogen evolution reactions
journal, October 2019

  • Yang, Ye; Xue, Xiong-Xiong; Chen, Qin-jun
  • The Journal of Chemical Physics, Vol. 151, Issue 14
  • DOI: 10.1063/1.5123539

Modeling of Electrocatalytic Dinitrogen Reduction on Microstructured Electrodes
journal, October 2018


Nitrogen Fixation Reaction Derived from Nanostructured Catalytic Materials
journal, August 2018

  • Wang, Shengyao; Ichihara, Fumihiko; Pang, Hong
  • Advanced Functional Materials, Vol. 28, Issue 50
  • DOI: 10.1002/adfm.201803309

A Combined Theory‐Experiment Analysis of the Surface Species in Lithium‐Mediated NH 3 Electrosynthesis
journal, January 2020

  • Schwalbe, Jay A.; Statt, Michael J.; Chosy, Cullen
  • ChemElectroChem, Vol. 7, Issue 7
  • DOI: 10.1002/celc.201902124

Single or Double: Which Is the Altar of Atomic Catalysts for Nitrogen Reduction Reaction?
journal, October 2018


Activated basal planes of WS 2 by intrinsic defects as catalysts for the electrocatalytic nitrogen reduction reaction
journal, January 2019

  • Yao, Xue; Chen, Zhiwen; Wang, Yaru
  • Journal of Materials Chemistry A, Vol. 7, Issue 45
  • DOI: 10.1039/c9ta10050d

Advanced Non‐metallic Catalysts for Electrochemical Nitrogen Reduction under Ambient Conditions
journal, July 2019

  • Zhang, Lili; Chen, Gao‐Feng; Ding, Liang‐Xin
  • Chemistry – A European Journal, Vol. 25, Issue 54
  • DOI: 10.1002/chem.201901668

Synergistic bimetallic CoFe 2 O 4 clusters supported on graphene for ambient electrocatalytic reduction of nitrogen to ammonia
journal, January 2019

  • Ahmed, Muhammad Ibrar; Chen, Sheng; Ren, Wenhao
  • Chemical Communications, Vol. 55, Issue 81
  • DOI: 10.1039/c9cc05684j

TiS 2 nanosheets for efficient electrocatalytic N 2 fixation to NH 3 under ambient conditions
journal, January 2019

  • Jia, Kun; Wang, Yuan; Qiu, Lang
  • Inorganic Chemistry Frontiers, Vol. 6, Issue 8
  • DOI: 10.1039/c9qi00301k

Theoretical insights into nitrogen fixation on Ti 2 C and Ti 2 CO 2 in a lithium–nitrogen battery
journal, January 2019

  • Yi, Shuaiyu; Liu, Guangdong; Liu, Zhixiao
  • Journal of Materials Chemistry A, Vol. 7, Issue 34
  • DOI: 10.1039/c9ta06232g

Functionalization of Hollow Nanomaterials for Catalytic Applications: Nanoreactor Construction
journal, July 2018


Nanoporous Palladium Hydride for Electrocatalytic N 2 Reduction under Ambient Conditions
journal, January 2020


Phosphorene‐Supported Transition‐Metal Dimer for Effective N 2 Electroreduction
journal, May 2019


A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions
journal, May 2018

  • Cui, Xiaoyang; Tang, Cheng; Zhang, Qiang
  • Advanced Energy Materials, Vol. 8, Issue 22
  • DOI: 10.1002/aenm.201800369

Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions
journal, October 2019


Molybdenum Sulfide within a Metal–Organic Framework for Photocatalytic Hydrogen Evolution from Water
journal, January 2019

  • Noh, Hyunho; Yang, Ying; Ahn, Sol
  • Journal of The Electrochemical Society, Vol. 166, Issue 5
  • DOI: 10.1149/2.0261905jes

Chromium Oxynitride Electrocatalysts for Electrochemical Synthesis of Ammonia Under Ambient Conditions
journal, October 2018


Atomic Modulation, Structural Design, and Systematic Optimization for Efficient Electrochemical Nitrogen Reduction
journal, January 2020


NbO 2 Electrocatalyst Toward 32% Faradaic Efficiency for N 2 Fixation
journal, October 2018


Selective Electrochemical Reduction of Nitrogen to Ammonia by Adjusting the Three-Phase Interface
journal, November 2019


Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential
journal, January 2019


Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3
journal, March 2019


Sustainability and Nanomaterials in Concert
journal, July 2017


Highly Selective Electrochemical Reduction of Dinitrogen to Ammonia at Ambient Temperature and Pressure over Iron Oxide Catalysts
journal, June 2018

  • Cui, Xiaoyang; Tang, Cheng; Liu, Xiao‐Meng
  • Chemistry – A European Journal, Vol. 24, Issue 69
  • DOI: 10.1002/chem.201800535

Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential
journal, May 2018


Ammonia photosynthesis via an association pathway using a plasmonic photoanode and a zirconium cathode
journal, January 2019

  • Oshikiri, Tomoya; Ueno, Kosei; Misawa, Hiroaki
  • Green Chemistry, Vol. 21, Issue 16
  • DOI: 10.1039/c9gc01658a

Ambient dinitrogen electrocatalytic reduction for ammonia synthesis
journal, January 2019

  • Chen, Aling; Xia, Bao Yu
  • Journal of Materials Chemistry A, Vol. 7, Issue 41
  • DOI: 10.1039/c9ta05505c

The identification of optimal active boron sites for N 2 reduction
journal, January 2020

  • Yin, Hui; Gan, Li-Yong; Wang, Ping
  • Journal of Materials Chemistry A, Vol. 8, Issue 7
  • DOI: 10.1039/c9ta13700a

Oxygen vacancy engineering in spinel-structured nanosheet wrapped hollow polyhedra for electrochemical nitrogen fixation under ambient conditions
journal, January 2020

  • Lai, Feili; Feng, Jianrui; Ye, Xiaobin
  • Journal of Materials Chemistry A, Vol. 8, Issue 4
  • DOI: 10.1039/c9ta11408d

Carbon Solving Carbon's Problems: Recent Progress of Nanostructured Carbon-Based Catalysts for the Electrochemical Reduction of CO 2
journal, July 2017

  • Vasileff, Anthony; Zheng, Yao; Qiao, Shi Zhang
  • Advanced Energy Materials, Vol. 7, Issue 21
  • DOI: 10.1002/aenm.201700759

Pt-embedded in monolayer g-C 3 N 4 as a promising single-atom electrocatalyst for ammonia synthesis
journal, January 2019

  • Yin, Hui; Li, Shu-Long; Gan, Li-Yong
  • Journal of Materials Chemistry A, Vol. 7, Issue 19
  • DOI: 10.1039/c9ta01624d

Advances in Electrocatalytic N 2 Reduction—Strategies to Tackle the Selectivity Challenge
journal, October 2018


Aqueous electrocatalytic N2 reduction under ambient conditions
journal, May 2018


Promoted Fixation of Molecular Nitrogen with Surface Oxygen Vacancies on Plasmon-Enhanced TiO 2 Photoelectrodes
journal, March 2018


Defect-rich fluorographene nanosheets for artificial N 2 fixation under ambient conditions
journal, January 2019

  • Zhao, Jinxiu; Yang, Jiajia; Ji, Lei
  • Chemical Communications, Vol. 55, Issue 29
  • DOI: 10.1039/c9cc01920k

Predicting two-dimensional pentagonal transition metal monophosphides for efficient electrocatalytic nitrogen reduction
journal, January 2019

  • Ying, Yiran; Fan, Ke; Luo, Xin
  • Journal of Materials Chemistry A, Vol. 7, Issue 18
  • DOI: 10.1039/c8ta11605a

Enhanced Electrocatalytic N 2 Reduction via Partial Anion Substitution in Titanium Oxide–Carbon Composites
journal, July 2019


Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach
journal, March 2018

  • Lee, Hiang Kwee; Koh, Charlynn Sher Lin; Lee, Yih Hong
  • Science Advances, Vol. 4, Issue 3
  • DOI: 10.1126/sciadv.aar3208

Morphology-dependent electrocatalytic nitrogen reduction on Ag triangular nanoplates
journal, January 2019

  • Gao, Wen-Yan; Hao, Yu-Chen; Su, Xin
  • Chemical Communications, Vol. 55, Issue 72
  • DOI: 10.1039/c9cc04691g

Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system
journal, January 2019


Single transition metal atom embedded into a MoS 2 nanosheet as a promising catalyst for electrochemical ammonia synthesis
journal, January 2018

  • Zhao, Jia; Zhao, Jingxiang; Cai, Qinghai
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 14
  • DOI: 10.1039/c7cp08626a

Nanoporous Palladium Hydride for Electrocatalytic N 2 Reduction under Ambient Conditions
journal, January 2020

  • Xu, Wence; Fan, Guilan; Chen, Jialiang
  • Angewandte Chemie International Edition, Vol. 59, Issue 9
  • DOI: 10.1002/anie.201914335

Enhancement of Selective Fixation of Dinitrogen to Ammonia under Modal Strong Coupling Conditions
journal, April 2020

  • Oshikiri, Tomoya; Shi, Xu; Misawa, Hiroaki
  • European Journal of Inorganic Chemistry, Vol. 2020, Issue 15-16
  • DOI: 10.1002/ejic.202000340

Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape
text, January 2020

  • Smith, Collin; Hill, Alfred K.; Torrente-Murciano, Laura
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.49538

Promoted Fixation of Molecular Nitrogen with Surface Oxygen Vacancies on Plasmon-Enhanced TiO 2 Photoelectrodes
journal, March 2018

  • Li, Chengcheng; Wang, Tuo; Zhao, Zhi-Jian
  • Angewandte Chemie International Edition, Vol. 57, Issue 19
  • DOI: 10.1002/anie.201713229

A Combined Theory‐Experiment Analysis of the Surface Species in Lithium‐Mediated NH 3 Electrosynthesis
journal, April 2020

  • Schwalbe, Jay A.; Statt, Michael J.; Chosy, Cullen
  • ChemElectroChem, Vol. 7, Issue 7
  • DOI: 10.1002/celc.202000265

Chromium Oxynitride Electrocatalysts for Electrochemical Synthesis of Ammonia Under Ambient Conditions
journal, July 2018

  • Yao, Yao; Feng, Qi; Li, Jiadong
  • ECS Meeting Abstracts, Vol. MA2018-02, Issue 52, p. 1760-1760
  • DOI: 10.1149/ma2018-02/52/1760

Carbon Nanomaterials for Energy and Biorelated Catalysis: Recent Advances and Looking Forward
journal, February 2019


Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential
journal, May 2018


Selective Electrochemical Reduction of Nitrogen to Ammonia by Adjusting the Three-Phase Interface
journal, November 2019