Glass binder development for a glass-bonded sodalite ceramic waste form
Abstract
This paper discusses work to develop Na2O-B2O3-SiO2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. In this paper, five new glasses with ~20 mass% Na2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. Finally, these improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.
- Authors:
- Publication Date:
- Research Org.:
- Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
- Sponsoring Org.:
- USDOE Office of Nuclear Energy (NE); USDOE Office of Science (SC), Biological and Environmental Research (BER); USDOE Office of Nuclear Energy (NE), Reactor Fleet and Advanced Reactor Development. Office of Nuclear Energy Technologies
- Contributing Org.:
- Idaho National Lab. (INL), Idaho Falls, ID (United States)
- OSTI Identifier:
- 1349076
- Alternate Identifier(s):
- OSTI ID: 1419553
- Report Number(s):
- PNNL-SA-123338
Journal ID: ISSN 0022-3115; PII: S0022311517301563; TRN: US1700521
- Grant/Contract Number:
- AC05-76RL01830; 48708
- Resource Type:
- Accepted Manuscript
- Journal Name:
- Journal of Nuclear Materials
- Additional Journal Information:
- Journal Volume: 489; Journal Issue: C; Journal ID: ISSN 0022-3115
- Publisher:
- Elsevier
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 12 MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES
Citation Formats
Riley, Brian J., Vienna, John D., Frank, Steven M., Kroll, Jared O., Peterson, Jacob A., Canfield, Nathan L., Zhu, Zihua, Zhang, Jiandong, Kruska, Karen, Schreiber, Daniel K., and Crum, Jarrod V. Glass binder development for a glass-bonded sodalite ceramic waste form. United States: N. p., 2017.
Web. doi:10.1016/j.jnucmat.2017.03.041.
Riley, Brian J., Vienna, John D., Frank, Steven M., Kroll, Jared O., Peterson, Jacob A., Canfield, Nathan L., Zhu, Zihua, Zhang, Jiandong, Kruska, Karen, Schreiber, Daniel K., & Crum, Jarrod V. Glass binder development for a glass-bonded sodalite ceramic waste form. United States. https://doi.org/10.1016/j.jnucmat.2017.03.041
Riley, Brian J., Vienna, John D., Frank, Steven M., Kroll, Jared O., Peterson, Jacob A., Canfield, Nathan L., Zhu, Zihua, Zhang, Jiandong, Kruska, Karen, Schreiber, Daniel K., and Crum, Jarrod V. Thu .
"Glass binder development for a glass-bonded sodalite ceramic waste form". United States. https://doi.org/10.1016/j.jnucmat.2017.03.041. https://www.osti.gov/servlets/purl/1349076.
@article{osti_1349076,
title = {Glass binder development for a glass-bonded sodalite ceramic waste form},
author = {Riley, Brian J. and Vienna, John D. and Frank, Steven M. and Kroll, Jared O. and Peterson, Jacob A. and Canfield, Nathan L. and Zhu, Zihua and Zhang, Jiandong and Kruska, Karen and Schreiber, Daniel K. and Crum, Jarrod V.},
abstractNote = {This paper discusses work to develop Na2O-B2O3-SiO2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. In this paper, five new glasses with ~20 mass% Na2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. Finally, these improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.},
doi = {10.1016/j.jnucmat.2017.03.041},
journal = {Journal of Nuclear Materials},
number = C,
volume = 489,
place = {United States},
year = {2017},
month = {6}
}
Web of Science