skip to main content

DOE PAGESDOE PAGES

Title: Massively parallel first-principles simulation of electron dynamics in materials

Here we present a highly scalable, parallel implementation of first-principles electron dynamics coupled with molecular dynamics (MD). By using optimized kernels, network topology aware communication, and by fully distributing all terms in the time-dependent Kohn–Sham equation, we demonstrate unprecedented time to solution for disordered aluminum systems of 2000 atoms (22,000 electrons) and 5400 atoms (59,400 electrons), with wall clock time as low as 7.5 s per MD time step. Despite a significant amount of non-local communication required in every iteration, we achieved excellent strong scaling and sustained performance on the Sequoia Blue Gene/Q supercomputer at LLNL. We obtained up to 59% of the theoretical sustained peak performance on 16,384 nodes and performance of 8.75 Petaflop/s (43% of theoretical peak) on the full 98,304 node machine (1,572,864 cores). Lastly, scalable explicit electron dynamics allows for the study of phenomena beyond the reach of standard first-principles MD, in particular, materials subject to strong or rapid perturbations, such as pulsed electromagnetic radiation, particle irradiation, or strong electric currents.
Authors:
; ORCiD logo ; ; ; ORCiD logo ;
Publication Date:
Report Number(s):
LLNL-JRNL-670641
Journal ID: ISSN 0743-7315
Grant/Contract Number:
AC52-07NA27344
Type:
Accepted Manuscript
Journal Name:
Journal of Parallel and Distributed Computing
Additional Journal Information:
Journal Volume: 106; Journal Issue: C; Journal ID: ISSN 0743-7315
Publisher:
Elsevier
Research Org:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 36 MATERIALS SCIENCE; 97 MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; Electron dynamics; TDDFT; Explicit time integration; Blue Gene/Q
OSTI Identifier:
1349002
Alternate Identifier(s):
OSTI ID: 1415865