skip to main content

DOE PAGESDOE PAGES

Title: Gaussian process surrogates for failure detection: A Bayesian experimental design approach

Authors:
ORCiD logo ; ; ORCiD logo
Publication Date:
Type:
Publisher's Accepted Manuscript
Journal Name:
Journal of Computational Physics
Additional Journal Information:
Journal Volume: 313; Journal Issue: C; Related Information: CHORUS Timestamp: 2018-09-14 16:58:40; Journal ID: ISSN 0021-9991
Publisher:
Elsevier
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
OSTI Identifier:
1348258

Wang, Hongqiao, Lin, Guang, and Li, Jinglai. Gaussian process surrogates for failure detection: A Bayesian experimental design approach. United States: N. p., Web. doi:10.1016/j.jcp.2016.02.053.
Wang, Hongqiao, Lin, Guang, & Li, Jinglai. Gaussian process surrogates for failure detection: A Bayesian experimental design approach. United States. doi:10.1016/j.jcp.2016.02.053.
Wang, Hongqiao, Lin, Guang, and Li, Jinglai. 2016. "Gaussian process surrogates for failure detection: A Bayesian experimental design approach". United States. doi:10.1016/j.jcp.2016.02.053.
@article{osti_1348258,
title = {Gaussian process surrogates for failure detection: A Bayesian experimental design approach},
author = {Wang, Hongqiao and Lin, Guang and Li, Jinglai},
abstractNote = {},
doi = {10.1016/j.jcp.2016.02.053},
journal = {Journal of Computational Physics},
number = C,
volume = 313,
place = {United States},
year = {2016},
month = {5}
}