skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Gaussian-like immersed-boundary kernel with three continuous derivatives and improved translational invariance

Authors:
; ;
Publication Date:
Sponsoring Org.:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
OSTI Identifier:
1348014
Grant/Contract Number:  
FA9550-12-1-0356; SC0008271; DMS-1016554; NSF DMS-1115341
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Journal of Computational Physics
Additional Journal Information:
Journal Name: Journal of Computational Physics Journal Volume: 316 Journal Issue: C; Journal ID: ISSN 0021-9991
Publisher:
Elsevier
Country of Publication:
United States
Language:
English

Citation Formats

Bao, Yuanxun, Kaye, Jason, and Peskin, Charles S. A Gaussian-like immersed-boundary kernel with three continuous derivatives and improved translational invariance. United States: N. p., 2016. Web. https://doi.org/10.1016/j.jcp.2016.04.024.
Bao, Yuanxun, Kaye, Jason, & Peskin, Charles S. A Gaussian-like immersed-boundary kernel with three continuous derivatives and improved translational invariance. United States. https://doi.org/10.1016/j.jcp.2016.04.024
Bao, Yuanxun, Kaye, Jason, and Peskin, Charles S. Fri . "A Gaussian-like immersed-boundary kernel with three continuous derivatives and improved translational invariance". United States. https://doi.org/10.1016/j.jcp.2016.04.024.
@article{osti_1348014,
title = {A Gaussian-like immersed-boundary kernel with three continuous derivatives and improved translational invariance},
author = {Bao, Yuanxun and Kaye, Jason and Peskin, Charles S.},
abstractNote = {},
doi = {10.1016/j.jcp.2016.04.024},
journal = {Journal of Computational Physics},
number = C,
volume = 316,
place = {United States},
year = {2016},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1016/j.jcp.2016.04.024

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations
journal, November 2009


Properties of Discrete Delta Functions and Local Convergence of the Immersed Boundary Method
journal, January 2012

  • Liu, Yang; Mori, Yoichiro
  • SIAM Journal on Numerical Analysis, Vol. 50, Issue 6
  • DOI: 10.1137/110836699

The immersed boundary method
journal, January 2002


Numerical analysis of blood flow in the heart
journal, November 1977


An Adaptive Version of the Immersed Boundary Method
journal, August 1999

  • Roma, Alexandre M.; Peskin, Charles S.; Berger, Marsha J.
  • Journal of Computational Physics, Vol. 153, Issue 2
  • DOI: 10.1006/jcph.1999.6293

Dynamic simulation of hydrodynamically interacting suspensions
journal, October 1988

  • Brady, John F.; Phillips, Ronald J.; Lester, Julia C.
  • Journal of Fluid Mechanics, Vol. 195, Issue -1
  • DOI: 10.1017/S0022112088002411