skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Zonal flow generation in inertial confinement fusion implosions

Abstract

A supervised machine learning algorithm trained on a multi-petabyte dataset of inertial confinement fusion simulations has identified a class of implosions that robustly achieve high yield, even in the presence of drive variations and hydrodynamic perturbations. These implosions are purposefully driven with a time-varying asymmetry, such that coherent flow generation during hotspot stagnation forces the capsule to self-organize into an ovoid, a shape that appears to be more resilient to shell perturbations than spherical designs. Here this new class of implosions, whose configurations are reminiscent of zonal flows in magnetic fusion devices, may offer a path to robust inertial fusion.

Authors:
 [1];  [2];  [1];  [1];  [1];  [1];  [1];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Texas A & M Univ., College Station, TX (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1347661
Report Number(s):
LLNL-JRNL-699377
Journal ID: ISSN 1070-664X; TRN: US1700645
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 24; Journal Issue: 3; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION

Citation Formats

Peterson, J. L., Humbird, K. D., Field, J. E., Brandon, S. T., Langer, S. H., Nora, R. C., Spears, B. K., and Springer, P. T. Zonal flow generation in inertial confinement fusion implosions. United States: N. p., 2017. Web. doi:10.1063/1.4977912.
Peterson, J. L., Humbird, K. D., Field, J. E., Brandon, S. T., Langer, S. H., Nora, R. C., Spears, B. K., & Springer, P. T. Zonal flow generation in inertial confinement fusion implosions. United States. doi:10.1063/1.4977912.
Peterson, J. L., Humbird, K. D., Field, J. E., Brandon, S. T., Langer, S. H., Nora, R. C., Spears, B. K., and Springer, P. T. Mon . "Zonal flow generation in inertial confinement fusion implosions". United States. doi:10.1063/1.4977912. https://www.osti.gov/servlets/purl/1347661.
@article{osti_1347661,
title = {Zonal flow generation in inertial confinement fusion implosions},
author = {Peterson, J. L. and Humbird, K. D. and Field, J. E. and Brandon, S. T. and Langer, S. H. and Nora, R. C. and Spears, B. K. and Springer, P. T.},
abstractNote = {A supervised machine learning algorithm trained on a multi-petabyte dataset of inertial confinement fusion simulations has identified a class of implosions that robustly achieve high yield, even in the presence of drive variations and hydrodynamic perturbations. These implosions are purposefully driven with a time-varying asymmetry, such that coherent flow generation during hotspot stagnation forces the capsule to self-organize into an ovoid, a shape that appears to be more resilient to shell perturbations than spherical designs. Here this new class of implosions, whose configurations are reminiscent of zonal flows in magnetic fusion devices, may offer a path to robust inertial fusion.},
doi = {10.1063/1.4977912},
journal = {Physics of Plasmas},
number = 3,
volume = 24,
place = {United States},
year = {2017},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The effects of early time laser drive on hydrodynamic instability growth in National Ignition Facility implosions
journal, September 2014

  • Peterson, J. L.; Clark, D. S.; Masse, L. P.
  • Physics of Plasmas, Vol. 21, Issue 9
  • DOI: 10.1063/1.4896708

Simulations of fill tube effects on the implosion of high-foot NIF ignition capsules
journal, May 2016


Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation
journal, May 2014


Symmetry tuning of a near one-dimensional 2-shock platform for code validation at the National Ignition Facility
journal, April 2016

  • Khan, S. F.; MacLaren, S. A.; Salmonson, J. D.
  • Physics of Plasmas, Vol. 23, Issue 4
  • DOI: 10.1063/1.4947223

An overview of Rayleigh-Taylor instability
journal, July 1984


Robustness studies of ignition targets for the National Ignition Facility in two dimensions
journal, May 2008

  • Clark, Daniel S.; Haan, Steven W.; Salmonson, Jay D.
  • Physics of Plasmas, Vol. 15, Issue 5
  • DOI: 10.1063/1.2890123

Polar direct drive on the National Ignition Facility
journal, May 2004

  • Skupsky, S.; Marozas, J. A.; Craxton, R. S.
  • Physics of Plasmas, Vol. 11, Issue 5, p. 2763-2770
  • DOI: 10.1063/1.1689665

Experimental results of radiation-driven, layered deuterium-tritium implosions with adiabat-shaped drives at the National Ignition Facility
journal, October 2016

  • Smalyuk, V. A.; Robey, H. F.; Döppner, T.
  • Physics of Plasmas, Vol. 23, Issue 10
  • DOI: 10.1063/1.4964919

On the Stability of Fluid Flows with Spherical Symmetry
journal, January 1954


Nonlinear behavior and turbulence spectra of drift waves and Rossby waves
journal, January 1979

  • Hasegawa, Akira; Maclennan, Carol G.; Kodama, Yuji
  • Physics of Fluids, Vol. 22, Issue 11
  • DOI: 10.1063/1.862504

Analytical model of the ablative Rayleigh–Taylor instability in the deceleration phase
journal, April 2005


Instability growth seeded by oxygen in CH shells on the National Ignition Facility
journal, March 2015

  • Haan, S. W.; Huang, H.; Johnson, M. A.
  • Physics of Plasmas, Vol. 22, Issue 3
  • DOI: 10.1063/1.4916300

Ignition condition and gain prediction for perturbed inertial confinement fusion targets
journal, November 2001

  • Kishony, Roy; Shvarts, Dov
  • Physics of Plasmas, Vol. 8, Issue 11
  • DOI: 10.1063/1.1412009

Theory of laser-induced adiabat shaping in inertial fusion implosions: The relaxation method
journal, April 2005

  • Betti, R.; Anderson, K.; Knauer, J.
  • Physics of Plasmas, Vol. 12, Issue 4
  • DOI: 10.1063/1.1856481

Numerical simulation of ablative Rayleigh–Taylor instability
journal, April 1991

  • Gardner, John H.; Bodner, Stephen E.; Dahlburg, Jill P.
  • Physics of Fluids B: Plasma Physics, Vol. 3, Issue 4
  • DOI: 10.1063/1.859835

Modeling hydrodynamic instabilities in inertial confinement fusion targets
journal, December 2000

  • Goncharov, V. N.; McKenty, P.; Skupsky, S.
  • Physics of Plasmas, Vol. 7, Issue 12
  • DOI: 10.1063/1.1321016

Laser-induced adiabat shaping by relaxation in inertial fusion implosions
journal, January 2004

  • Anderson, K.; Betti, R.
  • Physics of Plasmas, Vol. 11, Issue 1
  • DOI: 10.1063/1.1632903

Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping
journal, May 2016

  • Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4944821

Ensemble simulations of inertial confinement fusion implosions
journal, May 2017

  • Nora, Ryan; Peterson, Jayson Luc; Spears, Brian Keith
  • Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. 10, Issue 4
  • DOI: 10.1002/sam.11344

Convection driven zonal flows and vortices in the major planets
journal, June 1994

  • Busse, F. H.
  • Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 4, Issue 2
  • DOI: 10.1063/1.165999

The National Ignition Facility: enabling fusion ignition for the 21st century
journal, November 2004


Effect of the mounting membrane on shape in inertial confinement fusion implosions
journal, February 2015

  • Nagel, S. R.; Haan, S. W.; Rygg, J. R.
  • Physics of Plasmas, Vol. 22, Issue 2
  • DOI: 10.1063/1.4907179

Implosion configurations for robust ignition using high- density carbon (diamond) ablator for indirect-drive ICF at the National Ignition Facility
journal, May 2016


Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility
journal, May 2011

  • Haan, S. W.; Lindl, J. D.; Callahan, D. A.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592169

Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility
journal, April 2014

  • Kritcher, A. L.; Town, R.; Bradley, D.
  • Physics of Plasmas, Vol. 21, Issue 4
  • DOI: 10.1063/1.4871718

Prediction of ignition implosion performance using measurements of Low-deuterium surrogates
journal, August 2010


Equations of State for Ablator Materials in Inertial Confinement Fusion Simulations
journal, May 2016


Suppression of Rayleigh-Taylor Instability in Z -Pinch Loads with Tailored Density Profiles
journal, July 1996


A Simplex Method for Function Minimization
journal, January 1965


Improved target stability using picket pulses to increase and shape the ablator adiabat
journal, May 2005

  • Knauer, J. P.; Anderson, K.; Betti, R.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1882332

Instability of the interface of two gases accelerated by a shock wave
journal, January 1972


Improved performance of direct-drive inertial confinement fusion target designs with adiabat shaping using an intensity picket
journal, May 2003

  • Goncharov, V. N.; Knauer, J. P.; McKenty, P. W.
  • Physics of Plasmas, Vol. 10, Issue 5
  • DOI: 10.1063/1.1562166

Direct-drive laser fusion: Status and prospects
journal, May 1998

  • Bodner, Stephen E.; Colombant, Denis G.; Gardner, John H.
  • Physics of Plasmas, Vol. 5, Issue 5, p. 1901-1918
  • DOI: 10.1063/1.872861

Taylor instability in shock acceleration of compressible fluids
journal, May 1960

  • Richtmyer, Robert D.
  • Communications on Pure and Applied Mathematics, Vol. 13, Issue 2
  • DOI: 10.1002/cpa.3160130207

Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility
journal, May 2014

  • Town, R. P. J.; Bradley, D. K.; Kritcher, A.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876609

Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion
journal, May 1998

  • Betti, R.; Goncharov, V. N.; McCrory, R. L.
  • Physics of Plasmas, Vol. 5, Issue 5
  • DOI: 10.1063/1.872802

Differential ablator-fuel adiabat tuning in indirect-drive implosions
journal, March 2015


Near-vacuum hohlraums for driving fusion implosions with high density carbon ablatorsa)
journal, May 2015

  • Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921151

Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density
journal, November 1882


The structure and stability of vortex rings
journal, January 1972


Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740

On the two‐dimensional stability of the axisymmetric Burgers vortex
journal, July 1995

  • Prochazka, A.; Pullin, D. I.
  • Physics of Fluids, Vol. 7, Issue 7
  • DOI: 10.1063/1.868495