skip to main content

DOE PAGESDOE PAGES

Title: Characterizing the in vivo role of trehalose in Saccharomyces cerevisiae using the AGT1 transporter

Trehalose is a highly stable, nonreducing disaccharide of glucose. A large body of research exists implicating trehalose in a variety of cellular phenomena, notably response to stresses of various kinds. However, in very few cases has the role of trehalose been examined directly in vivo. Here, we describe the development and characterization of a system in Saccharomyces cerevisiae that allows us to manipulate intracellular trehalose concentrations independently of the biosynthetic enzymes and independently of any applied stress. We found that many physiological roles heretofore ascribed to intracellular trehalose, including heat resistance, are not due to the presence of trehalose per se. We also found that many of the metabolic and growth defects associated with mutations in the trehalose biosynthesis pathway are not abolished by providing abundant intracellular trehalose. Instead, we made the observation that intracellular accumulation of trehalose or maltose (another disaccharide of glucose) is growth-inhibitory in a carbon source-specific manner. We conclude that the physiological role of the trehalose pathway is fundamentally metabolic: i.e., more complex than simply the consequence of increased concentrations of the sugar and its attendant physical properties (with the exception of the companion paper where demonstrate a direct role for trehalose in protecting cells againstmore » desiccation).« less
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Princeton Univ., Princeton, NJ (United States)
Publication Date:
Grant/Contract Number:
SC0012461
Type:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 112; Journal Issue: 19; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences, Washington, DC (United States)
Research Org:
Princeton Univ., NJ (United States)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; yeast; trehalose; AGT1; heat shock; carbon source
OSTI Identifier:
1347586