skip to main content

DOE PAGESDOE PAGES

Title: Dynamic X-ray diffraction imaging of the ferroelectric response in bismuth ferrite

In this study, X-ray diffraction imaging is rapidly emerging as a powerful technique by which one can capture the local structure of crystalline materials at the nano- and meso-scale. Here, we present investigations of the dynamic structure of epitaxial monodomain BiFeO 3 thin-films using a novel full-field Bragg diffraction imaging modality. By taking advantage of the depth penetration of hard X-rays and their exquisite sensitivity to the atomic structure, we imaged in situ and in operando, the electric field-driven structural responses of buried BiFeO 3 epitaxial thin-films in micro-capacitor devices, with sub-100 nm lateral resolution. These imaging investigations were carried out at acquisition frame rates that reached up to 20 Hz and data transfer rates of 40 MB/s, while accessing diffraction contrast that is sensitive to the entire three-dimensional unit cell configuration. We mined these large datasets for material responses by employing matrix decomposition techniques, such as independent component analysis. We found that this statistical approach allows the extraction of the salient physical properties of the ferroelectric response of the material, such as coercive fields and transient spatiotemporal modulations in their piezoelectric response, and also facilitates their decoupling from extrinsic sources that are instrument specific.
Authors:
ORCiD logo [1] ;  [2] ;  [3] ;  [2] ;  [3]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Univ. of Wisconsin, Madison, WI (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Grant/Contract Number:
AC05-00OR22725; AC02-06CH11357
Type:
Published Article
Journal Name:
Advanced Structural and Chemical Imaging
Additional Journal Information:
Journal Volume: 3; Journal Issue: 1; Journal ID: ISSN 2198-0926
Publisher:
Springer
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS); Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Laboratory Directed Research and Development (LDRD) Program; USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE
OSTI Identifier:
1347466
Alternate Identifier(s):
OSTI ID: 1351788; OSTI ID: 1395861