skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: EuNi 5 InH 1.5-x (x = 0–1.5): hydrogen induced structural and magnetic transitions

Abstract

The new quaternary hydride EuNi 5InH 1.5 has been obtained by hydrogenation of the intermetallic parent EuNi5In under extremely mild conditions, hence, at room temperature and low hydrogen pressure. Hydrogenation at slightly elevated temperatures and pressures allows for the growth of large crystals, which is a rare observation for intermetallic hydrides. EuNi 5InH 1.5 crystallizes in its own structure type ( hP17, P6¯m2, a = 4.9437(6), c = 10.643(1) Å) with a unique arrangement of the intermetallic host. The hydrogen atoms prefer Ni-surrounded positions, occupying {EuNi 3} and {Eu 2Ni 2} tetrahedral voids in the structure. Upon hydrogenation of EuNi 5In an anisotropic volume expansion accompanied with a decrease of symmetry is observed. Magnetic measurements reveal antiferromagnetic ordering in the hydride below 4 K and indicate an intermediate +II/+III oxidation state for Eu both in the intermetallic phase and the hydride. X-ray photoemission spectroscopy confirms the existence of the two different oxidation states of Eu. The hydrogenation does not affect the oxidation state of Eu and the type of magnetic ordering, but exerts a strong influence on the transition temperature, crystal structure, mechanical and electrical properties. Crystallographic analysis suggests that Eu(II) and Eu(III) do not order but rather mix homogeneouslymore » on crystallographic sites. Electronic structure calculations reveal the metallic character of the hydride with several different types of chemical bonding interactions being present in the compound ranging from the formally ionic Eu–H to covalent Ni–H and delocalized metal–metal. As a result, geometry optimization confirm the thermodynamic instability of the intermetallic host lattice for the hydride and supports a transformation into the parental structure as observed experimentally.« less

Authors:
; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1347394
Report Number(s):
IS-J-9214
Journal ID: ISSN 2050-7526; JMCCCX
Grant/Contract Number:  
AC02-07CH11358
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Materials Chemistry C
Additional Journal Information:
Journal Volume: 5; Journal Issue: 12; Journal ID: ISSN 2050-7526
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Bigun, Inna, Smetana, Volodymyr, Mudryk, Yaroslav, Hlova, Ihor, Dzevenko, Mariya, Havela, Ladislav, Kalychak, Yaroslav, Pecharsky, Vitalij, and Mudring, Anja-Verena. EuNi 5 InH 1.5-x (x = 0–1.5): hydrogen induced structural and magnetic transitions. United States: N. p., 2017. Web. doi:10.1039/c7tc00121e.
Bigun, Inna, Smetana, Volodymyr, Mudryk, Yaroslav, Hlova, Ihor, Dzevenko, Mariya, Havela, Ladislav, Kalychak, Yaroslav, Pecharsky, Vitalij, & Mudring, Anja-Verena. EuNi 5 InH 1.5-x (x = 0–1.5): hydrogen induced structural and magnetic transitions. United States. doi:10.1039/c7tc00121e.
Bigun, Inna, Smetana, Volodymyr, Mudryk, Yaroslav, Hlova, Ihor, Dzevenko, Mariya, Havela, Ladislav, Kalychak, Yaroslav, Pecharsky, Vitalij, and Mudring, Anja-Verena. Sun . "EuNi 5 InH 1.5-x (x = 0–1.5): hydrogen induced structural and magnetic transitions". United States. doi:10.1039/c7tc00121e. https://www.osti.gov/servlets/purl/1347394.
@article{osti_1347394,
title = {EuNi 5 InH 1.5-x (x = 0–1.5): hydrogen induced structural and magnetic transitions},
author = {Bigun, Inna and Smetana, Volodymyr and Mudryk, Yaroslav and Hlova, Ihor and Dzevenko, Mariya and Havela, Ladislav and Kalychak, Yaroslav and Pecharsky, Vitalij and Mudring, Anja-Verena},
abstractNote = {The new quaternary hydride EuNi5InH1.5 has been obtained by hydrogenation of the intermetallic parent EuNi5In under extremely mild conditions, hence, at room temperature and low hydrogen pressure. Hydrogenation at slightly elevated temperatures and pressures allows for the growth of large crystals, which is a rare observation for intermetallic hydrides. EuNi5InH1.5 crystallizes in its own structure type (hP17, P6¯m2, a = 4.9437(6), c = 10.643(1) Å) with a unique arrangement of the intermetallic host. The hydrogen atoms prefer Ni-surrounded positions, occupying {EuNi3} and {Eu2Ni2} tetrahedral voids in the structure. Upon hydrogenation of EuNi5In an anisotropic volume expansion accompanied with a decrease of symmetry is observed. Magnetic measurements reveal antiferromagnetic ordering in the hydride below 4 K and indicate an intermediate +II/+III oxidation state for Eu both in the intermetallic phase and the hydride. X-ray photoemission spectroscopy confirms the existence of the two different oxidation states of Eu. The hydrogenation does not affect the oxidation state of Eu and the type of magnetic ordering, but exerts a strong influence on the transition temperature, crystal structure, mechanical and electrical properties. Crystallographic analysis suggests that Eu(II) and Eu(III) do not order but rather mix homogeneously on crystallographic sites. Electronic structure calculations reveal the metallic character of the hydride with several different types of chemical bonding interactions being present in the compound ranging from the formally ionic Eu–H to covalent Ni–H and delocalized metal–metal. As a result, geometry optimization confirm the thermodynamic instability of the intermetallic host lattice for the hydride and supports a transformation into the parental structure as observed experimentally.},
doi = {10.1039/c7tc00121e},
journal = {Journal of Materials Chemistry C},
number = 12,
volume = 5,
place = {United States},
year = {2017},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Structural and magnetic studies on RPtIn deuterides (R=Tb, Er, Tm)
journal, July 2012


Hydrogen absorption–desorption characteristics of the LaNi5Sn intermetallic compound
journal, June 2004


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Minimal basis sets in the linear muffin-tin orbital method: Application to the diamond-structure crystals C, Si, and Ge
journal, August 1986


An empirical correction for absorption anisotropy
journal, January 1995

  • Blessing, R. H.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 51, Issue 1
  • DOI: 10.1107/S0108767394005726

Projector augmented-wave method
journal, December 1994


Do f Electrons Play a Role in the Lanthanide−Ligand Bonds? A DFT Study of Ln(NR 2 ) 3 ; R = H, SiH 3
journal, August 2000

  • Maron, Laurent; Eisenstein, Odile
  • The Journal of Physical Chemistry A, Vol. 104, Issue 30
  • DOI: 10.1021/jp0010278

Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


Europium Palladium Hydrides
journal, May 2001

  • Kohlmann, H.; Fischer, H. E.; Yvon, K.
  • Inorganic Chemistry, Vol. 40, Issue 11
  • DOI: 10.1021/ic001225d

Recent advances in magnetic structure determination by neutron powder diffraction
journal, October 1993


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Finite Elastic Strain of Cubic Crystals
journal, June 1947


Explicit, First-Principles Tight-Binding Theory
journal, December 1984


New Quaternary metal hydrides with CaMgNiH4-type structure
journal, February 1994


Solid-State Structures and Properties of Europium and Samarium Hydrides
journal, May 2010


Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations
journal, August 1993

  • Dronskowski, Richard; Bloechl, Peter E.
  • The Journal of Physical Chemistry, Vol. 97, Issue 33
  • DOI: 10.1021/j100135a014

Effect of rare earth composition on the electrochemical properties of multicomponent RENi5−xMx (M = Co, Mn, Ti) alloys
journal, December 1995


Hydrogen-storage materials for mobile applications
journal, November 2001

  • Schlapbach, Louis; Züttel, Andreas
  • Nature, Vol. 414, Issue 6861
  • DOI: 10.1038/35104634

Rapid evaluation of LaNi5−xMnx (x=0.1–0.5) by X-ray diffraction and powder microelectrode (PME) techniques
journal, February 2007


Darstellung und Kristallstruktur der Phasen Li26Na58Ba38Ex (E = N, H; x = 0 – 1)
journal, May 2008

  • Smetana, Volodymyr; Babizhetskyy, Volodymyr; Vajenine, Grigori V.
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 634, Issue 5
  • DOI: 10.1002/zaac.200700520

Ab initiomolecular dynamics for liquid metals
journal, January 1993


Impact of hydrogen absorption on crystal structure and magnetic properties of geometrically frustrated Nd2Ni2In
journal, July 2013


Gold Derivatives of Eight Rare-Earth-Metal-Rich Tellurides: Monoclinic R 7 Au 2 Te 2 and Orthorhombic R 6 AuTe 2 Types
journal, February 2012

  • Chai, Ping; Corbett, John D.
  • Inorganic Chemistry, Vol. 51, Issue 6
  • DOI: 10.1021/ic202342v

Structure and related properties of (La,Ce,Nd,Pr)Ni5 alloys
journal, June 2000


Dynamic measurements of hydrogen reaction with LaNi5−xSnx alloys
journal, June 2013


Tetrahedral D Atom Coordination of Nickel and Evidence for Anti-isostructural Phase Transition in Orthorhombic Ce 2 Ni 7 D 4
journal, April 2007

  • Filinchuk, Yaroslav E.; Yvon, Klaus; Emerich, Herman
  • Inorganic Chemistry, Vol. 46, Issue 7
  • DOI: 10.1021/ic062312u

On the Strongly Correlated Electron Hydride Ce 2 Ni 2 MgH 7.7
journal, November 2008

  • Chevalier, Bernard; Krolak, Aleksandra A.; Bobet, Jean-Louis
  • Inorganic Chemistry, Vol. 47, Issue 22
  • DOI: 10.1021/ic801076b

The EuNi5-H system
journal, February 1985


The crystal structure of LaNi 5 D 7
journal, June 1986

  • Thompson, P.; Reilly, J. J.; Corliss, L. M.
  • Journal of Physics F: Metal Physics, Vol. 16, Issue 6
  • DOI: 10.1088/0305-4608/16/6/004

Hydrogen and deuterium in transition metal-p element compounds: Crystal chemical aspects of interstitial solid solubility and hydride phase formation
journal, August 1984


Interaction of the RNi5In (R = La, Ce and Nd) compounds with hydrogen
journal, September 1999


Solid solution of Ni in ErB4 and its crystal structure
journal, September 2004


Covalent radii revisited
journal, January 2008

  • Cordero, Beatriz; Gómez, Verónica; Platero-Prats, Ana E.
  • Dalton Transactions, Issue 21
  • DOI: 10.1039/b801115j

Large hydrogen capacity in hydrides R2Ni2In–H (R=La, Ce, Pr, Nd) with new structure type
journal, May 2009


Intermetallic hydrides: A review with ab initio aspects
journal, December 2010


Structure validation in chemical crystallography
journal, January 2009

  • Spek, Anthony L.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 65, Issue 2, p. 148-155
  • DOI: 10.1107/S090744490804362X

Crystal chemistry and metal-hydrogen bonding in anisotropic and interstitial hydrides of intermetallics of rare earth (R) and transition metals (T), RT3 and R2T7
journal, January 2008

  • Yartys, Volodymyr A.; Vajeeston, Ponniah; Riabov, Alexander B.
  • Zeitschrift für Kristallographie, Vol. 223, Issue 10
  • DOI: 10.1524/zkri.2008.1030

A short history of SHELX
journal, December 2007

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 64, Issue 1, p. 112-122
  • DOI: 10.1107/S0108767307043930

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Preparation, heat capacity, magnetic properties, and the magnetocaloric effect of EuO
journal, March 2005

  • Ahn, Kyunghan; Pecharsky, A. O.; Gschneidner, K. A.
  • Journal of Applied Physics, Vol. 97, Issue 6
  • DOI: 10.1063/1.1841463

Electronic structure of mixed-valence and charge-ordered Sm and Eu pnictides and chalcogenides
journal, August 2005


Hydrogen storage properties of LaNi3.8Al1.0M0.2 (M=Ni, Cu, Fe, Al, Cr, Mn) alloys
journal, October 2009


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Magnetization process in antiferromagnetic EuPdIn
journal, January 1998


Mossbauer effect of 151 Eu in EuNi 5 , EuMg 2 and their hydrides
journal, April 1978

  • Oliver, F. W.; West, K. W.; Cohen, R. L.
  • Journal of Physics F: Metal Physics, Vol. 8, Issue 4
  • DOI: 10.1088/0305-4608/8/4/021

Hydrogenation Inducing Ferromagnetism in the Ternary Antiferromagnet NdCoSi
journal, June 2010

  • Tencé, Sophie; Matar, Samir F.; André, Gilles
  • Inorganic Chemistry, Vol. 49, Issue 11
  • DOI: 10.1021/ic902079u

LaNi5-xAlx is a versatile alloy system for metal hydride applications
journal, September 1977

  • Mendelsohn, Marshall H.; Gruen, Dieter M.; Dwight, Austin E.
  • Nature, Vol. 269, Issue 5623
  • DOI: 10.1038/269045a0

A new view of valence instabilities in europium compounds: van Hove singularity in EuPdP
journal, October 1997


Deuterium site occupancies in Ce2Ni7D∼4 and comparison with CeNi3D2.8
journal, October 2007


Short hydrogen–hydrogen separations in novel intermetallic hydrides, RE3Ni3In3D4 (RE=La, Ce and Nd)
journal, January 2002


Isolated [Ni2H7]7− and [Ni4H12]12− Ions in La2MgNi2H8
journal, November 2006

  • Chotard, Jean-Noël; Filinchuk, Yaroslav; Revaz, Bernard
  • Angewandte Chemie International Edition, Vol. 45, Issue 46
  • DOI: 10.1002/anie.200603651

Metamagnetism in EuPdIn and EuAuIn
journal, January 1996


New iron(II) complex metal hydrides with SrMg2FeH8 type structure
journal, September 1995


Hydrogen-hydrogen interaction in the LaNiInH 4/3 hydride
journal, April 2012

  • Orgaz, Emilio; Aburto, Andrea
  • International Journal of Quantum Chemistry, Vol. 112, Issue 21
  • DOI: 10.1002/qua.24139

Thermodynamic and electrochemical hydrogenation properties of LaNi5 − xInx alloys
journal, November 2012


Thermodynamic properties of the NdNi5Sn-H system
journal, October 2004


Improved tetrahedron method for Brillouin-zone integrations
journal, June 1994


RE Ni 9 In 2 ( RE = Rare-Earth Metal): Crystal Chemistry, Hydrogen Absorption, and Magnetic Properties
journal, May 2014

  • Bigun, Inna; Dzevenko, Mariya; Havela, Ladislav
  • European Journal of Inorganic Chemistry, Vol. 2014, Issue 16
  • DOI: 10.1002/ejic.201400058

Phase relationships and structural, magnetic, and thermodynamic properties of the Yb 5 Si 4 Yb 5 Ge 4 pseudobinary system
journal, August 2005


ELF: The Electron Localization Function
journal, September 1997

  • Savin, Andreas; Nesper, Reinhard; Wengert, Steffen
  • Angewandte Chemie International Edition in English, Vol. 36, Issue 17
  • DOI: 10.1002/anie.199718081

    Works referencing / citing this record:

    Controlling magnetism via transition metal exchange in the series of intermetallics Eu(T1,T2) 5 In (T = Cu, Ag, Au)
    journal, January 2018

    • Smetana, Volodymyr; Mudryk, Yaroslav; Pecharsky, Vitalij K.
    • Journal of Materials Chemistry C, Vol. 6, Issue 6
    • DOI: 10.1039/c7tc04964a

    Controlling magnetism via transition metal exchange in the series of intermetallics Eu(T1,T2) 5 In (T = Cu, Ag, Au)
    journal, January 2018

    • Smetana, Volodymyr; Mudryk, Yaroslav; Pecharsky, Vitalij K.
    • Journal of Materials Chemistry C, Vol. 6, Issue 6
    • DOI: 10.1039/c7tc04964a