skip to main content

DOE PAGESDOE PAGES

Title: Effects of functional group mass variance on vibrational properties and thermal transport in graphene

Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. We present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first principles calculations. We also use graphane, a buckled graphene backbone with covalently bonded Hydrogen atoms on both sides, as the base material and vary the mass of the Hydrogen atoms to simulate the effect of mass variance from other functional groups. We find non-monotonic behavior of κ with increasing mass of the functional group and an unusual cross-over from acoustic-dominated to optic-dominated thermal transport behavior. We connect this cross-over to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection symmetry based scattering selection rule responsible for their large contributions in graphene. Our work demonstrates the potential for manipulation and engineering of thermal transport properties in two dimensional materials toward targeted applications.
Authors:
 [1] ;  [2]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division
  2. Jinan Univ., Guangzhou, Guangdong (China). School of Mechanics and Construction Engineering
Publication Date:
Grant/Contract Number:
AC05-00OR22725; AC02-05CH11231
Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 95; Journal Issue: 12; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
OSTI Identifier:
1347327
Alternate Identifier(s):
OSTI ID: 1346767

Lindsay, L., and Kuang, Y.. Effects of functional group mass variance on vibrational properties and thermal transport in graphene. United States: N. p., Web. doi:10.1103/PhysRevB.95.121404.
Lindsay, L., & Kuang, Y.. Effects of functional group mass variance on vibrational properties and thermal transport in graphene. United States. doi:10.1103/PhysRevB.95.121404.
Lindsay, L., and Kuang, Y.. 2017. "Effects of functional group mass variance on vibrational properties and thermal transport in graphene". United States. doi:10.1103/PhysRevB.95.121404. https://www.osti.gov/servlets/purl/1347327.
@article{osti_1347327,
title = {Effects of functional group mass variance on vibrational properties and thermal transport in graphene},
author = {Lindsay, L. and Kuang, Y.},
abstractNote = {Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. We present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first principles calculations. We also use graphane, a buckled graphene backbone with covalently bonded Hydrogen atoms on both sides, as the base material and vary the mass of the Hydrogen atoms to simulate the effect of mass variance from other functional groups. We find non-monotonic behavior of κ with increasing mass of the functional group and an unusual cross-over from acoustic-dominated to optic-dominated thermal transport behavior. We connect this cross-over to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection symmetry based scattering selection rule responsible for their large contributions in graphene. Our work demonstrates the potential for manipulation and engineering of thermal transport properties in two dimensional materials toward targeted applications.},
doi = {10.1103/PhysRevB.95.121404},
journal = {Physical Review B},
number = 12,
volume = 95,
place = {United States},
year = {2017},
month = {3}
}

Works referenced in this record:

Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition
journal, May 2010
  • Cai, Weiwei; Moore, Arden L.; Zhu, Yanwu
  • Nano Letters, Vol. 10, Issue 5, p. 1645-1651
  • DOI: 10.1021/nl9041966

Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965

Experimental observation of the quantum Hall effect and Berry's phase in graphene
journal, November 2005
  • Zhang, Yuanbo; Tan, Yan-Wen; Stormer, Horst L.
  • Nature, Vol. 438, Issue 7065, p. 201-204
  • DOI: 10.1038/nature04235

Electric Field Effect in Atomically Thin Carbon Films
journal, October 2004

Superior Thermal Conductivity of Single-Layer Graphene
journal, March 2008
  • Balandin, Alexander A.; Ghosh, Suchismita; Bao, Wenzhong
  • Nano Letters, Vol. 8, Issue 3, p. 902-907
  • DOI: 10.1021/nl0731872

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
journal, November 2012
  • Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras
  • Nature Nanotechnology, Vol. 7, Issue 11, p. 699-712
  • DOI: 10.1038/nnano.2012.193

Two-dimensional atomic crystals
journal, July 2005
  • Novoselov, K. S.; Jiang, D.; Schedin, F.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 30, p. 10451-10453
  • DOI: 10.1073/pnas.0502848102

The rise of graphene
journal, March 2007
  • Geim, A. K.; Novoselov, K. S.
  • Nature Materials, Vol. 6, Issue 3, p. 183-191
  • DOI: 10.1038/nmat1849

Single-layer MoS2 transistors
journal, January 2011
  • Radisavljevic, B.; Radenovic, A.; Brivio, J.
  • Nature Nanotechnology, Vol. 6, Issue 3, p. 147-150
  • DOI: 10.1038/nnano.2010.279