skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Metabolite concentrations, fluxes and free energies imply efficient enzyme usage

Abstract

In metabolism, available free energy is limited and must be divided across pathway steps to maintain a negative ΔG throughout. For each reaction, ΔG is log proportional both to a concentration ratio (reaction quotient to equilibrium constant) and to a flux ratio (backward to forward flux). In this paper, we use isotope labeling to measure absolute metabolite concentrations and fluxes in Escherichia coli, yeast and a mammalian cell line. We then integrate this information to obtain a unified set of concentrations and ΔG for each organism. In glycolysis, we find that free energy is partitioned so as to mitigate unproductive backward fluxes associated with ΔG near zero. Across metabolism, we observe that absolute metabolite concentrations and ΔG are substantially conserved and that most substrate (but not inhibitor) concentrations exceed the associated enzyme binding site dissociation constant (Km or Ki). Finally, the observed conservation of metabolite concentrations is consistent with an evolutionary drive to utilize enzymes efficiently given thermodynamic and osmotic constraints.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [2];  [1]
  1. Princeton Univ., Princeton, NJ (United States)
  2. Technion-Israel Institute of Technology, Haifa (Israel)
Publication Date:
Research Org.:
Princeton Univ., NJ (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1347119
Grant/Contract Number:  
SC0012461
Resource Type:
Accepted Manuscript
Journal Name:
Nature Chemical Biology
Additional Journal Information:
Journal Volume: 12; Journal Issue: 7; Journal ID: ISSN 1552-4450
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; biochemical reaction networks; mass spectrometry; metabolomics; systems biology

Citation Formats

Park, Junyoung O., Rubin, Sara A., Xu, Yi -Fan, Amador-Noguez, Daniel, Fan, Jing, Shlomi, Tomer, and Rabinowitz, Joshua D. Metabolite concentrations, fluxes and free energies imply efficient enzyme usage. United States: N. p., 2016. Web. doi:10.1038/nchembio.2077.
Park, Junyoung O., Rubin, Sara A., Xu, Yi -Fan, Amador-Noguez, Daniel, Fan, Jing, Shlomi, Tomer, & Rabinowitz, Joshua D. Metabolite concentrations, fluxes and free energies imply efficient enzyme usage. United States. doi:10.1038/nchembio.2077.
Park, Junyoung O., Rubin, Sara A., Xu, Yi -Fan, Amador-Noguez, Daniel, Fan, Jing, Shlomi, Tomer, and Rabinowitz, Joshua D. Mon . "Metabolite concentrations, fluxes and free energies imply efficient enzyme usage". United States. doi:10.1038/nchembio.2077. https://www.osti.gov/servlets/purl/1347119.
@article{osti_1347119,
title = {Metabolite concentrations, fluxes and free energies imply efficient enzyme usage},
author = {Park, Junyoung O. and Rubin, Sara A. and Xu, Yi -Fan and Amador-Noguez, Daniel and Fan, Jing and Shlomi, Tomer and Rabinowitz, Joshua D.},
abstractNote = {In metabolism, available free energy is limited and must be divided across pathway steps to maintain a negative ΔG throughout. For each reaction, ΔG is log proportional both to a concentration ratio (reaction quotient to equilibrium constant) and to a flux ratio (backward to forward flux). In this paper, we use isotope labeling to measure absolute metabolite concentrations and fluxes in Escherichia coli, yeast and a mammalian cell line. We then integrate this information to obtain a unified set of concentrations and ΔG for each organism. In glycolysis, we find that free energy is partitioned so as to mitigate unproductive backward fluxes associated with ΔG near zero. Across metabolism, we observe that absolute metabolite concentrations and ΔG are substantially conserved and that most substrate (but not inhibitor) concentrations exceed the associated enzyme binding site dissociation constant (Km or Ki). Finally, the observed conservation of metabolite concentrations is consistent with an evolutionary drive to utilize enzymes efficiently given thermodynamic and osmotic constraints.},
doi = {10.1038/nchembio.2077},
journal = {Nature Chemical Biology},
number = 7,
volume = 12,
place = {United States},
year = {2016},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 32 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli
journal, June 2009

  • Bennett, Bryson D.; Kimball, Elizabeth H.; Gao, Melissa
  • Nature Chemical Biology, Vol. 5, Issue 8
  • DOI: 10.1038/nchembio.186

Thermodynamics-Based Metabolic Flux Analysis
journal, March 2007

  • Henry, Christopher S.; Broadbelt, Linda J.; Hatzimanikatis, Vassily
  • Biophysical Journal, Vol. 92, Issue 5
  • DOI: 10.1529/biophysj.106.093138

Metabolic dynamics in the human red cell. Part III—Metabolic reaction rates
journal, January 1990


Dynamic modeling of the central carbon metabolism ofEscherichia coli
journal, May 2002

  • Chassagnole, Christophe; Noisommit-Rizzi, Naruemol; Schmid, Joachim W.
  • Biotechnology and Bioengineering, Vol. 79, Issue 1
  • DOI: 10.1002/bit.10288

Measuring enzyme activities under standardized in vivo-like conditions for systems biology: Standardized enzyme assays for systems biology
journal, January 2010


Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase
journal, April 2012

  • Xu, Yi-Fan; Amador-Noguez, Daniel; Reaves, Marshall Louis
  • Nature Chemical Biology, Vol. 8, Issue 6
  • DOI: 10.1038/nchembio.941

Protein kinases — the major drug targets of the twenty-first century?
journal, April 2002

  • Cohen, Philip
  • Nature Reviews Drug Discovery, Vol. 1, Issue 4
  • DOI: 10.1038/nrd773

Metabolic engineering
journal, April 2001


Metabolomic Analysis via Reversed-Phase Ion-Pairing Liquid Chromatography Coupled to a Stand Alone Orbitrap Mass Spectrometer
journal, April 2010

  • Lu, Wenyun; Clasquin, Michelle F.; Melamud, Eugene
  • Analytical Chemistry, Vol. 82, Issue 8
  • DOI: 10.1021/ac902837x

Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach
journal, July 2008

  • Bennett, Bryson D.; Yuan, Jie; Kimball, Elizabeth H.
  • Nature Protocols, Vol. 3, Issue 8
  • DOI: 10.1038/nprot.2008.107

Thermodynamic constraints for biochemical networks
journal, June 2004

  • Beard, Daniel A.; Babson, Eric; Curtis, Edward
  • Journal of Theoretical Biology, Vol. 228, Issue 3
  • DOI: 10.1016/j.jtbi.2004.01.008

Elimination of Thermodynamically Infeasible Loops in Steady-State Metabolic Models
journal, February 2011

  • Schellenberger, Jan; Lewis, Nathan E.; Palsson, Bernhard Ø.
  • Biophysical Journal, Vol. 100, Issue 3
  • DOI: 10.1016/j.bpj.2010.12.3707

A genome‐scale metabolic reconstruction for Escherichia coli K‐12 MG1655 that accounts for 1260 ORFs and thermodynamic information
journal, January 2007

  • Feist, Adam M.; Henry, Christopher S.; Reed, Jennifer L.
  • Molecular Systems Biology, Vol. 3, Issue 1
  • DOI: 10.1038/msb4100155

Glycolytic strategy as a tradeoff between energy yield and protein cost
journal, April 2013

  • Flamholz, A.; Noor, E.; Bar-Even, A.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 24
  • DOI: 10.1073/pnas.1215283110

Putative regulatory sites unraveled by network‐embedded thermodynamic analysis of metabolome data
journal, January 2006

  • Kümmel, Anne; Panke, Sven; Heinemann, Matthias
  • Molecular Systems Biology, Vol. 2, Issue 1
  • DOI: 10.1038/msb4100074

Ensemble Modeling of Metabolic Networks
journal, December 2008


Relationship between Thermodynamic Driving Force and One-Way Fluxes in Reversible Processes
journal, January 2007


The Thermodynamic Meaning of Metabolic Exchange Fluxes
journal, September 2007


A Mouse Model System to Genetically Dissect the Molecular Mechanisms Regulating Tumorigenesis
journal, September 2006


Avoiding Misannotation of In-Source Fragmentation Products as Cellular Metabolites in Liquid Chromatography–Mass Spectrometry-Based Metabolomics
journal, January 2015

  • Xu, Yi-Fan; Lu, Wenyun; Rabinowitz, Joshua D.
  • Analytical Chemistry, Vol. 87, Issue 4
  • DOI: 10.1021/ac504118y

Consistent Estimation of Gibbs Energy Using Component Contributions
journal, July 2013


A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations
journal, January 2001

  • Raamsdonk, Léonie M.; Teusink, Bas; Broadhurst, David
  • Nature Biotechnology, Vol. 19, Issue 1
  • DOI: 10.1038/83496

BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA
journal, November 2012

  • Schomburg, Ida; Chang, Antje; Placzek, Sandra
  • Nucleic Acids Research, Vol. 41, Issue D1
  • DOI: 10.1093/nar/gks1049

Thermodynamic considerations on erythrocyte glycolysis
journal, February 1965

  • Minakami, Shigeki; Yoshikawa, Haruhisa
  • Biochemical and Biophysical Research Communications, Vol. 18, Issue 3
  • DOI: 10.1016/0006-291X(65)90711-4

Genome-Scale Thermodynamic Analysis of Escherichia coli Metabolism
journal, February 2006

  • Henry, Christopher S.; Jankowski, Matthew D.; Broadbelt, Linda J.
  • Biophysical Journal, Vol. 90, Issue 4, p. 1453-1461
  • DOI: 10.1529/biophysj.105.071720

Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks
journal, June 2007

  • Hoppe, Andreas; Hoffmann, Sabrina; Holzhütter, Hermann-Georg
  • BMC Systems Biology, Vol. 1, Issue 1
  • DOI: 10.1186/1752-0509-1-23

Metabolic flux analysis at ultra short time scale: Isotopically non-stationary 13C labeling experiments
journal, April 2007


Kinetic flux profiling of nitrogen assimilation in Escherichia coli
journal, August 2006

  • Yuan, Jie; Fowler, William U.; Kimball, Elizabeth
  • Nature Chemical Biology, Vol. 2, Issue 10
  • DOI: 10.1038/nchembio816

Visual account of protein investment in cellular functions
journal, June 2014

  • Liebermeister, W.; Noor, E.; Flamholz, A.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 23
  • DOI: 10.1073/pnas.1314810111

Escherichia coli achieves faster growth by increasing catalytic and translation rates of proteins
journal, January 2013

  • Valgepea, Kaspar; Adamberg, Kaarel; Seiman, Andrus
  • Molecular BioSystems, Vol. 9, Issue 9
  • DOI: 10.1039/c3mb70119k

Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast
journal, September 2008

  • de Godoy, Lyris M. F.; Olsen, Jesper V.; Cox, Jürgen
  • Nature, Vol. 455, Issue 7217
  • DOI: 10.1038/nature07341

Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins
journal, January 2012

  • Geiger, Tamar; Wehner, Anja; Schaab, Christoph
  • Molecular & Cellular Proteomics, Vol. 11, Issue 3
  • DOI: 10.1074/mcp.M111.014050

Optimality and evolutionary tuning of the expression level of a protein
journal, July 2005


Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity
journal, July 2007

  • Beg, Q. K.; Vazquez, A.; Ernst, J.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 31
  • DOI: 10.1073/pnas.0609845104

Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress
journal, January 2007

  • Ralser, Markus; Wamelink, Mirjam M.; Kowald, Axel
  • Journal of Biology, Vol. 6, Issue 4
  • DOI: 10.1186/jbiol61

Time hierarchy in enzymatic reaction chains resulting from optimality principles
journal, November 1987


Acidic Acetonitrile for Cellular Metabolome Extraction from Escherichia coli
journal, August 2007

  • Rabinowitz, Joshua D.; Kimball, Elizabeth
  • Analytical Chemistry, Vol. 79, Issue 16
  • DOI: 10.1021/ac070470c

Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry
journal, August 2006

  • Bajad, Sunil U.; Lu, Wenyun; Kimball, Elizabeth H.
  • Journal of Chromatography A, Vol. 1125, Issue 1, p. 76-88
  • DOI: 10.1016/j.chroma.2006.05.019

Glutamine‐driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia
journal, January 2013

  • Fan, Jing; Kamphorst, Jurre J.; Mathew, Robin
  • Molecular Systems Biology, Vol. 9, Issue 1
  • DOI: 10.1038/msb.2013.65

BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions
journal, January 2010

  • Schellenberger, Jan; Park, Junyoung O.; Conrad, Tom M.
  • BMC Bioinformatics, Vol. 11, Issue 1
  • DOI: 10.1186/1471-2105-11-213

Data, information, knowledge and principle: back to metabolism in KEGG
journal, November 2013

  • Kanehisa, Minoru; Goto, Susumu; Sato, Yoko
  • Nucleic Acids Research, Vol. 42, Issue D1
  • DOI: 10.1093/nar/gkt1076

13CFLUX2—high-performance software suite for 13C-metabolic flux analysis
journal, October 2012


Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems
journal, January 1999


Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements
journal, July 2006

  • Antoniewicz, Maciek R.; Kelleher, Joanne K.; Stephanopoulos, Gregory
  • Metabolic Engineering, Vol. 8, Issue 4
  • DOI: 10.1016/j.ymben.2006.01.004

Quantitative assignment of reaction directionality in constraint-based models of metabolism: Application to Escherichia coli
journal, December 2009


Quantitative Assignment of Reaction Directionality in a Multicompartmental Human Metabolic Reconstruction
journal, April 2012


Physiological concentrations of purines and pyrimidines
journal, January 1994

  • Traut, Thomas W.
  • Molecular and Cellular Biochemistry, Vol. 140, Issue 1
  • DOI: 10.1007/BF00928361

Coenzyme A: Back in action
journal, March 2005


    Works referencing / citing this record:

    Primordial Krebs-cycle-like non-enzymatic reactions detected by mass spectrometry and nuclear magnetic resonance
    journal, January 2017


    Multiscale Modeling Meets Machine Learning: What Can We Learn?
    journal, February 2020

    • Peng, Grace C. Y.; Alber, Mark; Buganza Tepole, Adrian
    • Archives of Computational Methods in Engineering
    • DOI: 10.1007/s11831-020-09405-5

    Integrating –omics data into genome-scale metabolic network models: principles and challenges
    journal, October 2018

    • Ramon, Charlotte; Gollub, Mattia G.; Stelling, Jörg
    • Essays in Biochemistry, Vol. 62, Issue 4
    • DOI: 10.1042/ebc20180011

    Primordial Krebs-cycle-like non-enzymatic reactions detected by mass spectrometry and nuclear magnetic resonance
    journal, January 2017