skip to main content


Title: Enhanced torsional actuation and stress coupling in Mn-modified 0.93(Na 0.5Bi 0.5TiO 3)-0.07BaTiO 3 lead-free piezoceramic system

This paper is concerned with the development of a piezoelectric d 15 shear-induced torsion actuator made of a lead-free piezoceramic material exhibiting giant piezoelectric shear stress coefficient (e 15) and piezoelectric transverse shear actuation force comparable to that of leadbased shear-mode piezoceramics. The Mn-modified 0.93(Na 0.5Bi 0.5TiO 3)-0.07BaTiO 3 (NBT-BTMn) composition exhibited excellent properties as a torsional transducer with piezoelectric shear stress coefficient on the order of 11.6 C m –2. The torsional transducer, consisting of two oppositely polarized NBT-BT-Mn d 15 mode piezoceramic shear patches, provided a rate of twist of 0.08 mm m –1 V –1 under quasi-static 150 V drive. The high value of piezoelectric shear d 15 coefficient in NBT-BT-Mn sample further demonstrated its potential in practical applications. Lastly, these results confirm that the lead-free piezoceramics can be as effective as their lead-based counterparts.
 [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Science and Technology of Advanced Materials
Additional Journal Information:
Journal Volume: 18; Journal Issue: 1; Journal ID: ISSN 1468-6996
IOP Publishing
Research Org:
Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
36 MATERIALS SCIENCE; lead-free; piezoceramic; shear-mode; torsion; actuation
OSTI Identifier: