DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Carbon–Hydrogen Bond Activation, C–N Bond Coupling, and Cycloaddition Reactivity of a Three-Coordinate Nickel Complex Featuring a Terminal Imido Ligand

Abstract

Here, the three-coordinate imidos (dtbpe)Ni=NR (dtbpe = tBu2PCH2CH2PtBu2, R = 2,6-iPr2C6H3, 2,4,6-Me3C6H2 (Mes), and 1-adamantyl (Ad)), which contain a legitimate Ni–N double bond as well as basic imido nitrogen based on theoretical analysis, readily deprotonate HC≡CPh to form the amide acetylide species (dtbpe)Ni{NH(Ar)}(C≡CPh). In the case of R = 2,6-iPr2C6H3, reductive carbonylation results in formation of the (dtbpe)Ni(CO)2 along with the N–C coupled product keteneimine PhCH=C=N(2,6- iPr2C6H3). Given the ability of the Ni=N bond to have biradical character as suggested by theoretical analysis, H atom abstraction can also occur in (dtbpe)Ni=N{2,6-iPr2C6H3} when this species is treated with HSn(nBu)3. Likewise, the microscopic reverse reaction—conversion of the Ni(I) anilide (dtbpe)Ni{NH(2,6-iPr2C6H3)} to the imido (dtbpe)Ni=N{2,6-iPr2C6H3}—is promoted when using the radical Mes*O (Mes* = 2,4,6-tBu3C6H2). Reactivity studies involving the imido complexes, in particular (dtbpe)Ni=N{2,6-iPr2C6H3}, are also reported with small, unsaturated molecules such as diphenylketene, benzylisocyanate, benzaldehyde, and carbon dioxide, including the formation of C–N and N–N bonds by coupling reactions. In addition to NMR spectroscopic data and combustion analysis, we also report structural studies for all the cycloaddition reactions involving the imido (dtbpe)Ni=N{2,6-iPr2C6H3}.

Authors:
 [1];  [1];  [1];  [2];  [1]
  1. Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
  2. Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States, Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
Publication Date:
Research Org.:
Univ. of North Texas, Denton, TX (United States); Univ. of Chicago, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1165390
Alternate Identifier(s):
OSTI ID: 1345643
Grant/Contract Number:  
FG02-03ER15387
Resource Type:
Published Article
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Name: Inorganic Chemistry Journal Volume: 53 Journal Issue: 24; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Mindiola, Daniel J., Waterman, Rory, Iluc, Vlad M., Cundari, Thomas R., and Hillhouse, Gregory L. Carbon–Hydrogen Bond Activation, C–N Bond Coupling, and Cycloaddition Reactivity of a Three-Coordinate Nickel Complex Featuring a Terminal Imido Ligand. United States: N. p., 2014. Web. doi:10.1021/ic5026153.
Mindiola, Daniel J., Waterman, Rory, Iluc, Vlad M., Cundari, Thomas R., & Hillhouse, Gregory L. Carbon–Hydrogen Bond Activation, C–N Bond Coupling, and Cycloaddition Reactivity of a Three-Coordinate Nickel Complex Featuring a Terminal Imido Ligand. United States. https://doi.org/10.1021/ic5026153
Mindiola, Daniel J., Waterman, Rory, Iluc, Vlad M., Cundari, Thomas R., and Hillhouse, Gregory L. Mon . "Carbon–Hydrogen Bond Activation, C–N Bond Coupling, and Cycloaddition Reactivity of a Three-Coordinate Nickel Complex Featuring a Terminal Imido Ligand". United States. https://doi.org/10.1021/ic5026153.
@article{osti_1165390,
title = {Carbon–Hydrogen Bond Activation, C–N Bond Coupling, and Cycloaddition Reactivity of a Three-Coordinate Nickel Complex Featuring a Terminal Imido Ligand},
author = {Mindiola, Daniel J. and Waterman, Rory and Iluc, Vlad M. and Cundari, Thomas R. and Hillhouse, Gregory L.},
abstractNote = {Here, the three-coordinate imidos (dtbpe)Ni=NR (dtbpe = tBu2PCH2CH2PtBu2, R = 2,6-iPr2C6H3, 2,4,6-Me3C6H2 (Mes), and 1-adamantyl (Ad)), which contain a legitimate Ni–N double bond as well as basic imido nitrogen based on theoretical analysis, readily deprotonate HC≡CPh to form the amide acetylide species (dtbpe)Ni{NH(Ar)}(C≡CPh). In the case of R = 2,6-iPr2C6H3, reductive carbonylation results in formation of the (dtbpe)Ni(CO)2 along with the N–C coupled product keteneimine PhCH=C=N(2,6- iPr2C6H3). Given the ability of the Ni=N bond to have biradical character as suggested by theoretical analysis, H atom abstraction can also occur in (dtbpe)Ni=N{2,6-iPr2C6H3} when this species is treated with HSn(nBu)3. Likewise, the microscopic reverse reaction—conversion of the Ni(I) anilide (dtbpe)Ni{NH(2,6-iPr2C6H3)} to the imido (dtbpe)Ni=N{2,6-iPr2C6H3}—is promoted when using the radical Mes*O• (Mes* = 2,4,6-tBu3C6H2). Reactivity studies involving the imido complexes, in particular (dtbpe)Ni=N{2,6-iPr2C6H3}, are also reported with small, unsaturated molecules such as diphenylketene, benzylisocyanate, benzaldehyde, and carbon dioxide, including the formation of C–N and N–N bonds by coupling reactions. In addition to NMR spectroscopic data and combustion analysis, we also report structural studies for all the cycloaddition reactions involving the imido (dtbpe)Ni=N{2,6-iPr2C6H3}.},
doi = {10.1021/ic5026153},
journal = {Inorganic Chemistry},
number = 24,
volume = 53,
place = {United States},
year = {Mon Dec 01 00:00:00 EST 2014},
month = {Mon Dec 01 00:00:00 EST 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/ic5026153

Citation Metrics:
Cited by: 47 works
Citation information provided by
Web of Science

Figures / Tables:

Scheme 1 Scheme 1: Terminal Coordinated Ni$=$N-type Complexes of Nickel

Save / Share:

Works referenced in this record:

Oxidative Group Transfer to Co(I) Affords a Terminal Co(III) Imido Complex
journal, September 2002

  • Jenkins, David M.; Betley, Theodore A.; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 124, Issue 38
  • DOI: 10.1021/ja026852b

C–H Functionalization Reactivity of a Nickel–Imide
journal, June 2012

  • Wiese, Stefan; McAfee, Jason L.; Pahls, Dale R.
  • Journal of the American Chemical Society, Vol. 134, Issue 24
  • DOI: 10.1021/ja302149k

UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
journal, December 1992

  • Rappe, A. K.; Casewit, C. J.; Colwell, K. S.
  • Journal of the American Chemical Society, Vol. 114, Issue 25, p. 10024-10035
  • DOI: 10.1021/ja00051a040

Hindered Brønsted bases as Lewis base catalysts
journal, January 2009

  • Tabassum, Sobia; Sereda, Oksana; Reddy, Peddiahgari Vasu Govardhana
  • Organic & Biomolecular Chemistry, Vol. 7, Issue 19
  • DOI: 10.1039/b908899g

Snapshots of Complete Nitrogen Atom Transfer from an Iron(IV) Nitrido Complex
journal, June 2011

  • Scepaniak, Jeremiah J.; Bontchev, Ranko P.; Johnson, Dennis L.
  • Angewandte Chemie International Edition, Vol. 50, Issue 29
  • DOI: 10.1002/anie.201102028

Late Transition Metal .mu.-Oxo and .mu.-Imido Complexes. 15. Oxidative Coupling of Rhodium Phenyl Imido/Amido Complexes
journal, September 1994

  • Ge, Yuan-Wen; Ye, Yao; Sharp, Paul R.
  • Journal of the American Chemical Society, Vol. 116, Issue 18
  • DOI: 10.1021/ja00097a063

Synthesis, Structure, and Reactions of a Three-Coordinate Nickel-Carbene Complex, {1,2-Bis(di- tert -butylphosphino)ethane}NiCPh 2
journal, August 2002

  • Mindiola, Daniel J.; Hillhouse, Gregory L.
  • Journal of the American Chemical Society, Vol. 124, Issue 34
  • DOI: 10.1021/ja0269183

Application of the E-C Approach to Understanding the Bond Energies Thermodynamics of Late-Metal Amido, Aryloxo and Alkoxo Complexes: An Alternative to pπ/dπ Repulsion
journal, April 1999

  • Holland, Patrick L.; Andersen, Richard A.; Bergman, Robert G.
  • Comments on Inorganic Chemistry, Vol. 21, Issue 1-3
  • DOI: 10.1080/02603599908020418

Late Transition Metal Oxo and Imido Chemistry
journal, April 1999


A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives
journal, April 1999


Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions
journal, January 1980

  • Krishnan, R.; Binkley, J. S.; Seeger, R.
  • The Journal of Chemical Physics, Vol. 72, Issue 1
  • DOI: 10.1063/1.438955

Equilibrium acidities of carbon acids. VI. Establishment of an absolute scale of acidities in dimethyl sulfoxide solution
journal, November 1975

  • Matthews, Walter S.; Bares, Joseph E.; Bartmess, John E.
  • Journal of the American Chemical Society, Vol. 97, Issue 24
  • DOI: 10.1021/ja00857a010

Carbon−Heteroatom Bond-Forming Reductive Eliminations of Amines, Ethers, and Sulfides
journal, December 1998

  • Hartwig, John F.
  • Accounts of Chemical Research, Vol. 31, Issue 12
  • DOI: 10.1021/ar970282g

Reductive Deprotonation and Dehydrogenation of Phenylhydrazine at a Nickel Center To Give a Nickel Diazenido Complex
journal, September 2012

  • Köthe, Claudia; Metzinger, Ramona; Herwig, Christian
  • Inorganic Chemistry, Vol. 51, Issue 18
  • DOI: 10.1021/ic301066x

Reduction of Organic Compounds by Lithium Aluminum Hydride. III. Halides, Quinones, Miscellaneous Nitrogen Compounds 1
journal, November 1948

  • Nystrom, Robert F.; Brown, Weldon G.
  • Journal of the American Chemical Society, Vol. 70, Issue 11
  • DOI: 10.1021/ja01191a057

Rational Development of Practical Catalysts for Aromatic Carbon−Nitrogen Bond Formation
journal, December 1998

  • Wolfe, John P.; Wagaw, Seble; Marcoux, Jean-François
  • Accounts of Chemical Research, Vol. 31, Issue 12
  • DOI: 10.1021/ar9600650

A Terminal Ni(III)−Imide with Diverse Reactivity Pathways
journal, August 2005

  • Kogut, Elzbieta; Wiencko, Heather L.; Zhang, Libei
  • Journal of the American Chemical Society, Vol. 127, Issue 32
  • DOI: 10.1021/ja0533186

Mechanism of Catalytic Nitrene Transfer Using Iron(I)–Isocyanide Complexes
journal, September 2013

  • Cowley, Ryan E.; Golder, Matthew R.; Eckert, Nathan A.
  • Organometallics, Vol. 32, Issue 19
  • DOI: 10.1021/om400379p

The Construction and Interpretation of Mcscf Wavefunctions
journal, October 1998


Bis(di-tert-butylphosphino)ethan-nickel(0)-Komplexe / Bis(di-tert-butylphosphino)ethane-nickel(0) Complexes
journal, May 1993

  • Pörschke, Klaus-Richard; Pluta, Christian; Proft, Bernd
  • Zeitschrift für Naturforschung B, Vol. 48, Issue 5
  • DOI: 10.1515/znb-1993-0511

Group-Transfer Reactions of Nickel−Carbene and −Nitrene Complexes with Organoazides and Nitrous Oxide that Form New C═N, C═O, and N═N Bonds
journal, September 2009

  • Harrold, Nicole D.; Waterman, Rory; Hillhouse, Gregory L.
  • Journal of the American Chemical Society, Vol. 131, Issue 36
  • DOI: 10.1021/ja904370h

Interactions of Aziridines with Nickel Complexes:  Oxidative-Addition and Reductive-Elimination Reactions that Break and Make C−N Bonds
journal, March 2002

  • Lin, Beatrice L.; Clough, Christopher R.; Hillhouse, Gregory L.
  • Journal of the American Chemical Society, Vol. 124, Issue 12
  • DOI: 10.1021/ja017652n

Group Transfer from Nickel Imido, Phosphinidene, and Carbene Complexes to Ethylene with Formation of Aziridine, Phosphirane, and Cyclopropane Products
journal, November 2003

  • Waterman, Rory; Hillhouse, Gregory L.
  • Journal of the American Chemical Society, Vol. 125, Issue 44
  • DOI: 10.1021/ja0381914

Arrested 1,2-Hydrogen Migration from Silicon to Nickel upon Oxidation of a Three-Coordinate Ni(I) Silyl Complex
journal, September 2010

  • Iluc, Vlad M.; Hillhouse, Gregory L.
  • Journal of the American Chemical Society, Vol. 132, Issue 34
  • DOI: 10.1021/ja1052329

Oxygen-Induced Ligand Dehydrogenation of a Planar Bis-μ-Chloronickel(I) Dimer Featuring an NHC Ligand
journal, May 2005

  • Dible, Benjamin R.; Sigman, Matthew S.; Arif, Atta M.
  • Inorganic Chemistry, Vol. 44, Issue 11
  • DOI: 10.1021/ic050445u

A short history of SHELX
journal, December 2007

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 64, Issue 1, p. 112-122
  • DOI: 10.1107/S0108767307043930

Catalytic nitrene transfer from an imidoiron(iii) complex to form carbodiimides and isocyanates
journal, January 2009

  • Cowley, Ryan E.; Eckert, Nathan A.; Elhaïk, Jérôme
  • Chemical Communications, Issue 13
  • DOI: 10.1039/b820620a

η 2 -Organoazide Complexes of Nickel and Their Conversion to Terminal Imido Complexes via Dinitrogen Extrusion
journal, September 2008

  • Waterman, Rory; Hillhouse, Gregory L.
  • Journal of the American Chemical Society, Vol. 130, Issue 38
  • DOI: 10.1021/ja805530z

General atomic and molecular electronic structure system
journal, November 1993

  • Schmidt, Michael W.; Baldridge, Kim K.; Boatz, Jerry A.
  • Journal of Computational Chemistry, Vol. 14, Issue 11, p. 1347-1363
  • DOI: 10.1002/jcc.540141112

Hydrogen-Atom Abstraction from Ni(I) Phosphido and Amido Complexes Gives Phosphinidene and Imide Ligands
journal, November 2010

  • Iluc, Vlad M.; Hillhouse, Gregory L.
  • Journal of the American Chemical Society, Vol. 132, Issue 43
  • DOI: 10.1021/ja107115q

Synthesis and Characterization of Three-Coordinate Ni(III)-Imide Complexes
journal, August 2011

  • Iluc, Vlad M.; Miller, Alexander J. M.; Anderson, John S.
  • Journal of the American Chemical Society, Vol. 133, Issue 33
  • DOI: 10.1021/ja2024993

Safe and Convenient Procedure for Solvent Purification
journal, January 1996

  • Pangborn, Amy B.; Giardello, Michael A.; Grubbs, Robert H.
  • Organometallics, Vol. 15, Issue 5, p. 1518-1520
  • DOI: 10.1021/om9503712

Reactions and Applications of Titanium Imido Complexes
journal, November 2005

  • Hazari, Nilay; Mountford, Philip
  • Accounts of Chemical Research, Vol. 38, Issue 11
  • DOI: 10.1021/ar030244z

Terminal Amido and Imido Complexes of Three-Coordinate Nickel
journal, May 2001

  • Mindiola, Daniel J.; Hillhouse, Gregory L.
  • Journal of the American Chemical Society, Vol. 123, Issue 19
  • DOI: 10.1021/ja010358a

Formation of Phosphirenes by Phosphinidene Group-Transfer Reactions from (dtbpe)NiP(dmp) to Alkynes
journal, December 2003

  • Waterman, Rory; Hillhouse, Gregory L.
  • Organometallics, Vol. 22, Issue 25
  • DOI: 10.1021/om0341754

Flash Photolytic Generation of Primary, Secondary, and Tertiary Ynamines in Aqueous Solution and Study of Their Carbon-Protonation Reactions in That Medium
journal, January 1996

  • Chiang, Y.; Grant, A. S.; Kresge, A. J.
  • Journal of the American Chemical Society, Vol. 118, Issue 18
  • DOI: 10.1021/ja9601797

Strongly bent nickel imides supported by a chelating bis(N-heterocyclic carbene) ligand
journal, January 2013

  • Harrold, Nicole D.; Hillhouse, Gregory L.
  • Chemical Science, Vol. 4, Issue 10
  • DOI: 10.1039/c3sc51517f

β-Diketiminato Nickel Imides in Catalytic Nitrene Transfer to Isocyanides
journal, April 2013

  • Wiese, Stefan; Aguila, Mae Joanne B.; Kogut, Elzbieta
  • Organometallics, Vol. 32, Issue 8
  • DOI: 10.1021/om300909n

Metallaoxetanes as possible intermediates in metal-promoted deoxygenation of epoxides and epoxidation of olefins
journal, January 1992

  • Baeckvall, Jan E.; Boekman, Fredrik; Blomberg, Margareta R. A.
  • Journal of the American Chemical Society, Vol. 114, Issue 2
  • DOI: 10.1021/ja00028a021

A “Side-on” Superoxonickel Complex [LNi(O 2 )] with a Square-Planar Tetracoordinate Nickel(II) Center and Its Conversion into [LNi(μ-OH) 2 NiL]
journal, September 2008

  • Yao, Shenglai; Bill, Eckhard; Milsmann, Carsten
  • Angewandte Chemie International Edition, Vol. 47, Issue 37
  • DOI: 10.1002/anie.200802234

Fluoroalkylimido-complexes of group VIII metals
journal, January 1970

  • McGlinchey, M. J.; Stone, F. G. A.
  • Journal of the Chemical Society D: Chemical Communications, Issue 19
  • DOI: 10.1039/c2970001265a

Reactivity of Tris(trimethylsilyl)silane toward Diarylaminyl Radicals
journal, August 2001

  • Varlamov, Vladimir T.; Denisov, Evguenii T.; Chatgilialoglu, Chryssostomos
  • The Journal of Organic Chemistry, Vol. 66, Issue 19
  • DOI: 10.1021/jo010408u

Formation of a Cobalt(III) Imido from a Cobalt(II) Amido Complex. Evidence for Proton-Coupled Electron Transfer
journal, March 2007

  • Cowley, Ryan E.; Bontchev, Ranko P.; Sorrell, John
  • Journal of the American Chemical Society, Vol. 129, Issue 9
  • DOI: 10.1021/ja066899n

Sequential Reaction Intermediates in Aliphatic C−H Bond Functionalization Initiated by a Bis(μ-oxo)dinickel(III) Complex
journal, April 2006

  • Cho, Jaeheung; Furutachi, Hideki; Fujinami, Shuhei
  • Inorganic Chemistry, Vol. 45, Issue 7
  • DOI: 10.1021/ic0514243

Formation of CC and CN Bonds in NiII Ketimide Complexes via Transient NiIII Aryl Imides
journal, March 2007

  • Bai, Guangcai; Stephan, Douglas W.
  • Angewandte Chemie International Edition, Vol. 46, Issue 11
  • DOI: 10.1002/anie.200604547

Catalytic C−H Bond Amination from High-Spin Iron Imido Complexes
journal, April 2011

  • King, Evan R.; Hennessy, Elisabeth T.; Betley, Theodore A.
  • Journal of the American Chemical Society, Vol. 133, Issue 13
  • DOI: 10.1021/ja110066j

Catalytic Tuning of a Phosphinoethane Ligand for Enhanced C−H Activation
journal, September 2008

  • Cundari, Thomas R.; Jimenez-Halla, J. Oscar C.; Morello, Glenn R.
  • Journal of the American Chemical Society, Vol. 130, Issue 39
  • DOI: 10.1021/ja803176j

A Two-Coordinate Nickel Imido Complex That Effects C−H Amination
journal, February 2011

  • Laskowski, Carl A.; Miller, Alexander J. M.; Hillhouse, Gregory L.
  • Journal of the American Chemical Society, Vol. 133, Issue 4
  • DOI: 10.1021/ja1101213