skip to main content

DOE PAGESDOE PAGES

Title: Weyl current, scale-invariant inflation, and Planck scale generation

Scalar fields, $$\phi$$ i, can be coupled nonminimally to curvature and satisfy the general criteria: (i) the theory has no mass input parameters, including M P=0; (ii) the $$\phi$$ i have arbitrary values and gradients, but undergo a general expansion and relaxation to constant values that satisfy a nontrivial constraint, K($$\phi$$ i)=constant; (iii) this constraint breaks scale symmetry spontaneously, and the Planck mass is dynamically generated; (iv) there can be adequate inflation associated with slow roll in a scale-invariant potential subject to the constraint; (v) the final vacuum can have a small to vanishing cosmological constant; (vi) large hierarchies in vacuum expectation values can naturally form; (vii) there is a harmless dilaton which naturally eludes the usual constraints on massless scalars. Finally, these models are governed by a global Weyl scale symmetry and its conserved current, K μ. At the quantum level the Weyl scale symmetry can be maintained by an invariant specification of renormalized quantities.
Authors:
 [1] ;  [2] ;  [3]
  1. Univ. of Oxford (United Kingdom). Dept. of Physics
  2. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
  3. Univ. of Oxford (United Kingdom). Rudolf Peierls Centre for Theoretical Physics
Publication Date:
Report Number(s):
FERMILAB-PUB-16-458-T; arXiv:1610.09243
Journal ID: ISSN 2470-0010; PRVDAQ; 1495005
Grant/Contract Number:
AC02-07CH11359
Type:
Accepted Manuscript
Journal Name:
Physical Review D
Additional Journal Information:
Journal Volume: 95; Journal Issue: 4; Journal ID: ISSN 2470-0010
Publisher:
American Physical Society (APS)
Research Org:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
OSTI Identifier:
1345633
Alternate Identifier(s):
OSTI ID: 1343347

Ferreira, Pedro G., Hill, Christopher T., and Ross, Graham G.. Weyl current, scale-invariant inflation, and Planck scale generation. United States: N. p., Web. doi:10.1103/PhysRevD.95.043507.
Ferreira, Pedro G., Hill, Christopher T., & Ross, Graham G.. Weyl current, scale-invariant inflation, and Planck scale generation. United States. doi:10.1103/PhysRevD.95.043507.
Ferreira, Pedro G., Hill, Christopher T., and Ross, Graham G.. 2017. "Weyl current, scale-invariant inflation, and Planck scale generation". United States. doi:10.1103/PhysRevD.95.043507. https://www.osti.gov/servlets/purl/1345633.
@article{osti_1345633,
title = {Weyl current, scale-invariant inflation, and Planck scale generation},
author = {Ferreira, Pedro G. and Hill, Christopher T. and Ross, Graham G.},
abstractNote = {Scalar fields, $\phi$i, can be coupled nonminimally to curvature and satisfy the general criteria: (i) the theory has no mass input parameters, including MP=0; (ii) the $\phi$i have arbitrary values and gradients, but undergo a general expansion and relaxation to constant values that satisfy a nontrivial constraint, K($\phi$i)=constant; (iii) this constraint breaks scale symmetry spontaneously, and the Planck mass is dynamically generated; (iv) there can be adequate inflation associated with slow roll in a scale-invariant potential subject to the constraint; (v) the final vacuum can have a small to vanishing cosmological constant; (vi) large hierarchies in vacuum expectation values can naturally form; (vii) there is a harmless dilaton which naturally eludes the usual constraints on massless scalars. Finally, these models are governed by a global Weyl scale symmetry and its conserved current, Kμ. At the quantum level the Weyl scale symmetry can be maintained by an invariant specification of renormalized quantities.},
doi = {10.1103/PhysRevD.95.043507},
journal = {Physical Review D},
number = 4,
volume = 95,
place = {United States},
year = {2017},
month = {2}
}